基于行为标志物的主观认知下降和轻度认知障碍老年人功能状态预测模型:研究方案。

Behavioral marker-based predictive modeling of functional status for older adults with subjective cognitive decline and mild cognitive impairment: Study protocol.

作者信息

Kang Bada, Ma Jinkyoung, Jeong Innhee, Yoon Seolah, Kim Jennifer Ivy, Heo Seok-Jae, Oh Sarah Soyeon

机构信息

Mo-Im Kim Nursing Research Institute, Yonsei University College of Nursing, Seoul, Republic of Korea.

Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea.

出版信息

Digit Health. 2024 Aug 25;10:20552076241269555. doi: 10.1177/20552076241269555. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

This study describes a research protocol for a behavioral marker-based predictive model that examines the functional status of older adults with subjective cognitive decline and mild cognitive impairment.

METHODS

A total of 130 older adults aged ≥65 years with subjective cognitive decline or mild cognitive impairment will be recruited from the Dementia Relief Centers or the Community Service Centers. Data on behavioral and psychosocial markers (e.g. physical activity, mobility, sleep/wake patterns, social interaction, and mild behavioral impairment) will be collected using passive wearable actigraphy, in-person questionnaires, and smartphone-based ecological momentary assessments. Two follow-up assessments will be performed at 12 and 24 months after baseline. Mixed-effect machine learning models: MErf, MEgbm, MEmod, and MEctree, and standard machine learning models without random effects [random forest, gradient boosting machine] will be employed in our analyses to predict functional status over time.

RESULTS

The results of this study will be fundamental for developing tailored digital interventions that apply deep learning techniques to behavioral data to predict, identify, and aid in the management of functional decline in older adults with subjective cognitive decline and mild cognitive impairment. These older adults are considered the optimal target population for preventive interventions and will benefit from such tailored strategies.

CONCLUSIONS

Our study will contribute to the development of self-care interventions that utilize behavioral data and machine learning techniques to provide automated analyses of the functional decline of older adults who are at risk for dementia.

摘要

目的

本研究描述了一种基于行为标志物的预测模型的研究方案,该模型用于检查主观认知下降和轻度认知障碍的老年人的功能状态。

方法

将从痴呆症救助中心或社区服务中心招募130名年龄≥65岁、有主观认知下降或轻度认知障碍的老年人。将使用被动式可穿戴活动记录仪、面对面问卷调查和基于智能手机的生态瞬时评估来收集行为和心理社会标志物(如身体活动、行动能力、睡眠/觉醒模式、社会互动和轻度行为障碍)的数据。在基线后的12个月和24个月进行两次随访评估。我们的分析将采用混合效应机器学习模型:MErf、MEgbm、MEmod和MEctree,以及无随机效应的标准机器学习模型[随机森林、梯度提升机]来预测随时间变化的功能状态。

结果

本研究的结果对于开发定制的数字干预措施至关重要,这些措施将深度学习技术应用于行为数据,以预测、识别和帮助管理主观认知下降和轻度认知障碍的老年人的功能衰退。这些老年人被认为是预防性干预的最佳目标人群,并将从这种定制策略中受益。

结论

我们的研究将有助于开发自我护理干预措施,这些措施利用行为数据和机器学习技术,对有痴呆症风险的老年人的功能衰退进行自动分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索