Suppr超能文献

创纪录的超声敏感型 NO 纳米发电机用于级联肿瘤细胞 pyroptosis 和免疫治疗。

Record-High Ultrasound-Sensitive NO Nanogenerators for Cascade Tumor Pyroptosis and Immunotherapy.

机构信息

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, 310009, China.

出版信息

Adv Sci (Weinh). 2023 Sep;10(26):e2302278. doi: 10.1002/advs.202302278. Epub 2023 Jul 3.

Abstract

Pyroptosis is a pro-inflammatory cell death that is associated with innate immunity promotion against tumors. Excess nitric oxide (NO)-triggered nitric stress has potential to induce pyroptosis, but the precise delivery of NO is challenging. Ultrasound (US)-responsive NO production has dominant priority due to its deep penetration, low side effects, noninvasion, and local activation manner. In this work, US-sensitive NO donor N-methyl-N-nitrosoaniline (NMA) with thermodynamically favorable structure is selected and loaded into hyaluronic acid (HA)-modified hollow manganese dioxide nanoparticles (hMnO NPs) to fabricate hMnO @HA@NMA (MHN) nanogenerators (NGs). The obtained NGs have a record-high NO generation efficiency under US irradiation and can release Mn after targeting the tumor sites. Later on, cascade tumor pyroptosis and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING)-based immunotherapy is achieved and tumor growth is effectively inhibited.

摘要

细胞焦亡是一种与先天免疫促进肿瘤相关的促炎细胞死亡。过量的一氧化氮 (NO) 引发的氮应激有可能诱导细胞焦亡,但 NO 的精确传递具有挑战性。由于其具有深穿透性、低副作用、非侵入性和局部激活方式,超声 (US) 响应型 NO 产生具有主要优势。在这项工作中,选择了热力学有利结构的超声敏感型一氧化氮供体 N-甲基-N-亚硝基苯胺 (NMA),并将其装载到透明质酸 (HA) 修饰的中空二氧化锰纳米粒子 (hMnO NPs) 中,以制备 hMnO@HA@NMA (MHN) 纳米发电机 (NG)。所得到的 NGs 在 US 照射下具有创纪录的高 NO 生成效率,并可以在靶向肿瘤部位后释放 Mn。随后,实现了级联肿瘤细胞焦亡和基于环鸟苷酸-腺苷酸合酶-干扰素基因刺激物 (cGAS-STING) 的免疫治疗,有效地抑制了肿瘤生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f41/10502831/655212de7bc5/ADVS-10-2302278-g006.jpg

相似文献

1
Record-High Ultrasound-Sensitive NO Nanogenerators for Cascade Tumor Pyroptosis and Immunotherapy.
Adv Sci (Weinh). 2023 Sep;10(26):e2302278. doi: 10.1002/advs.202302278. Epub 2023 Jul 3.
2
Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy.
Biomater Res. 2023 Apr 15;27(1):29. doi: 10.1186/s40824-023-00374-x.
5
Manganese-Based Nanoactivator Optimizes Cancer Immunotherapy Enhancing Innate Immunity.
ACS Nano. 2020 Apr 28;14(4):3927-3940. doi: 10.1021/acsnano.9b06111. Epub 2020 Apr 20.
6
Simultaneous Photoactivation of cGAS-STING Pathway and Pyroptosis by Platinum(II) Triphenylamine Complexes for Cancer Immunotherapy.
Angew Chem Int Ed Engl. 2022 Oct 24;61(43):e202210988. doi: 10.1002/anie.202210988. Epub 2022 Sep 23.
8
Activating Innate Immunity by a STING Signal Amplifier for Local and Systemic Immunotherapy.
ACS Nano. 2022 Oct 25;16(10):15977-15993. doi: 10.1021/acsnano.2c03509. Epub 2022 Oct 3.

引用本文的文献

1
Ultrasound-assisted immunotherapy for malignant tumour.
Front Immunol. 2025 May 13;16:1547594. doi: 10.3389/fimmu.2025.1547594. eCollection 2025.
2
Manganese-Based Nanotherapeutics for Targeted Treatment of Breast Cancer.
ACS Appl Bio Mater. 2025 May 19;8(5):3571-3600. doi: 10.1021/acsabm.5c00040. Epub 2025 Apr 28.
4
Mechanisms and Applications of Manganese-Based Nanomaterials in Tumor Diagnosis and Therapy.
Biomater Res. 2025 Feb 28;29:0158. doi: 10.34133/bmr.0158. eCollection 2025.
5
Emerging nitric oxide gas-assisted cancer photothermal treatment.
Exploration (Beijing). 2024 Mar 24;4(6):20230163. doi: 10.1002/EXP.20230163. eCollection 2024 Dec.
6
Pyroptosis-Inducing Biomaterials Pave the Way for Transformative Antitumor Immunotherapy.
Adv Sci (Weinh). 2024 Dec;11(47):e2410336. doi: 10.1002/advs.202410336. Epub 2024 Nov 6.
7
Enhanced pyroptosis induction with pore-forming gene delivery for osteosarcoma microenvironment reshaping.
Bioact Mater. 2024 May 13;38:455-471. doi: 10.1016/j.bioactmat.2024.05.009. eCollection 2024 Aug.

本文引用的文献

1
Predicting DNA-Reactivity of N-Nitrosamines: A Quantum Chemical Approach.
Chem Res Toxicol. 2022 Nov 21;35(11):2068-2084. doi: 10.1021/acs.chemrestox.2c00217. Epub 2022 Oct 27.
2
DNAzyme-Assisted Nano-Herb Delivery System for Multiple Tumor Immune Activation.
Small. 2022 Nov;18(45):e2203942. doi: 10.1002/smll.202203942. Epub 2022 Sep 26.
3
Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells.
J Mater Chem B. 2022 Jun 22;10(24):4672-4683. doi: 10.1039/d2tb00393g.
4
Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy.
Bioact Mater. 2022 Apr 20;19:237-250. doi: 10.1016/j.bioactmat.2022.04.011. eCollection 2023 Jan.
5
Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis.
ACS Nano. 2022 Feb 22;16(2):2429-2441. doi: 10.1021/acsnano.1c08913. Epub 2022 Feb 8.
6
Cancer statistics, 2022.
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.
7
The emerging roles of nitric oxide in ferroptosis and pyroptosis of tumor cells.
Life Sci. 2022 Feb 1;290:120257. doi: 10.1016/j.lfs.2021.120257. Epub 2021 Dec 21.
9
Facile Synthesis of a Cubic Porphyrin-Based Covalent Organic Framework for Combined Breast Cancer Therapy.
ACS Appl Mater Interfaces. 2021 Dec 8;13(48):56873-56880. doi: 10.1021/acsami.1c16366. Epub 2021 Nov 19.
10
Microenvironment-Responsive Prodrug-Induced Pyroptosis Boosts Cancer Immunotherapy.
Adv Sci (Weinh). 2021 Dec;8(24):e2101840. doi: 10.1002/advs.202101840. Epub 2021 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验