Suppr超能文献

从各个世代的原料生产生物乙醇的技术全景图。

A panoramic view of technological landscape for bioethanol production from various generations of feedstocks.

机构信息

Department of Environmental Sciences, Central University of Jammu, Jammu and Kashmir, India.

Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India.

出版信息

Bioengineered. 2023 Dec;14(1):81-112. doi: 10.1080/21655979.2022.2095702.

Abstract

Bioethanol is an appropriate alternate energy option due to its renewable, nontoxic, environmentally friendly, and carbon-neutral nature. Depending upon various feedstocks, bioethanol is classified in different various generations. First-generation ethanol created a food vs fuel problem, which was overcome by second-generation, third-generation and fourth-generation ethanol. The considerable availability of lignocellulosic biomass makes it a suitable feedstock, however, its recalcitrant nature is the main hurdle in converting it to bioethanol. The present study gives a comprehensive assessment of global biofuel policies and the current status of ethanol production. Feedstocks for first-generation (sugar and starch-based), second-generation (lignocellulosic biomass and energy crops), third-generation (algal-based) and fourth-generation (genetically modified algal biomass or crops) are discussed in detail. The study also assessed the process for ethanol production from various feedstocks, besides giving a holestic background knowledge on the bioconversion process, factors affecting bioethanol production, and various microorganisms involved in the fermentation process. Biotechnological tools also play a pivotal role in enhancing process efficiency and product yield. In adddition, most significant development in the field of genetic engineering and adaptive evolution are also highlighted.

摘要

生物乙醇是一种合适的替代能源,因为它具有可再生、无毒、环保和碳中性的特点。根据不同的原料,生物乙醇可分为不同的代际。第一代乙醇产生了粮食与燃料的矛盾,这一问题通过第二代、第三代和第四代乙醇得到了解决。大量存在的木质纤维素生物质使其成为一种合适的原料,但它的顽固性是将其转化为生物乙醇的主要障碍。本研究对全球生物燃料政策和乙醇生产的现状进行了全面评估。详细讨论了第一代(糖和淀粉基)、第二代(木质纤维素生物质和能源作物)、第三代(藻类基)和第四代(基因改造藻类生物质或作物)的原料。该研究还评估了从各种原料生产乙醇的工艺,除了提供生物转化过程的整体背景知识外,还介绍了影响生物乙醇生产的因素以及发酵过程中涉及的各种微生物。生物技术工具在提高工艺效率和产品产量方面也起着关键作用。此外,还强调了遗传工程和适应性进化领域的最重要进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ab/10321172/36c0f1138da0/KBIE_A_2095702_UF0001_OC.jpg

相似文献

1
A panoramic view of technological landscape for bioethanol production from various generations of feedstocks.
Bioengineered. 2023 Dec;14(1):81-112. doi: 10.1080/21655979.2022.2095702.
2
Engineering grass biomass for sustainable and enhanced bioethanol production.
Planta. 2019 Aug;250(2):395-412. doi: 10.1007/s00425-019-03218-y. Epub 2019 Jun 24.
3
Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
Protein Pept Lett. 2018;25(2):108-119. doi: 10.2174/0929866525666180122105835.
4
Comprehensive assessment of 2G bioethanol production.
Bioresour Technol. 2020 Oct;313:123630. doi: 10.1016/j.biortech.2020.123630. Epub 2020 Jun 4.
5
Renewable Energy Potential: Second-Generation Biomass as Feedstock for Bioethanol Production.
Molecules. 2024 Apr 4;29(7):1619. doi: 10.3390/molecules29071619.
6
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions.
Molecules. 2022 Dec 9;27(24):8717. doi: 10.3390/molecules27248717.
7
Algal biomass conversion to bioethanol - a step-by-step assessment.
Biotechnol J. 2014 Jan;9(1):73-86. doi: 10.1002/biot.201200353. Epub 2013 Nov 12.
8
Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance.
Bioresour Technol. 2021 May;328:124833. doi: 10.1016/j.biortech.2021.124833. Epub 2021 Feb 12.
9
A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.
Crit Rev Biotechnol. 2015;35(3):342-54. doi: 10.3109/07388551.2013.878896.
10
Bioethanol from lignocellulosic biomass: current findings determine research priorities.
ScientificWorldJournal. 2014;2014:298153. doi: 10.1155/2014/298153. Epub 2014 Dec 31.

引用本文的文献

2
Biofuel production from starchy crops: advanced technology and current perspectives.
Arch Microbiol. 2025 Aug 11;207(9):220. doi: 10.1007/s00203-025-04428-7.
3
The prospect of fruit wastes in bioethanol production: A review.
Heliyon. 2024 Oct 1;10(19):e38776. doi: 10.1016/j.heliyon.2024.e38776. eCollection 2024 Oct 15.

本文引用的文献

1
Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach.
Bioenergy Res. 2022;15(4):1820-1841. doi: 10.1007/s12155-022-10401-9. Epub 2022 Feb 7.
2
Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives.
Bioresour Technol. 2022 Jan;344(Pt B):126292. doi: 10.1016/j.biortech.2021.126292. Epub 2021 Nov 5.
3
Biofuel production from Macroalgae: present scenario and future scope.
Bioengineered. 2021 Dec;12(2):9216-9238. doi: 10.1080/21655979.2021.1996019.
5
Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution.
Bioresour Technol. 2021 Jun;329:124926. doi: 10.1016/j.biortech.2021.124926. Epub 2021 Mar 2.
6
Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production.
Environ Sci Pollut Res Int. 2020 Sep;27(26):32481-32493. doi: 10.1007/s11356-020-09534-1. Epub 2020 Jun 6.
8
Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose.
J Ind Microbiol Biotechnol. 2020 Mar;47(3):329-341. doi: 10.1007/s10295-020-02270-y. Epub 2020 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验