Suppr超能文献

采用顶空固相微萃取-气相色谱-质谱联用技术分析手气味挥发性有机物,建立多元回归模型预测性别。

Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS.

机构信息

Department of Chemistry and Biochemistry, Global Forensic and Justice Center, Florida International University, Miami, FL, United States of America.

Department of Chemistry and Food Science, Currently at Framingham State University, Framingham, Massachusetts, United States of America.

出版信息

PLoS One. 2023 Jul 5;18(7):e0286452. doi: 10.1371/journal.pone.0286452. eCollection 2023.

Abstract

The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles.

摘要

利用人类挥发性有机化合物 (VOC) 作为法医证据的功效已通过犬类在犯罪现场反应、嫌疑犯识别和位置检查方面得到了很好的证明。尽管在该领域已经广泛应用人类气味证据,但对人类 VOC 谱的实验室评估一直受到限制。本研究使用顶空固相微萃取-气相色谱-质谱联用 (HS-SPME-GC-MS) 分析了从 60 个人(30 名女性和 30 名男性)中收集的人类手部气味样本。从每个研究对象的手掌表面收集的人类挥发性物质被解释为分类和预测性别。使用有监督降维技术评估来自对象手部气味特征的挥发性有机化合物 (VOC) 特征:偏最小二乘判别分析 (PLS-DA)、正交投影到潜在结构判别分析 (OPLS-DA) 和线性判别分析 (LDA)。PLS-DA 2D 模型表明男性和女性研究对象之间存在聚类。在 PLS-DA 模型中添加第三个组件揭示了 3D PLS-DA 模型中男性和女性研究对象的聚类和最小分离。OPLS-DA 模型显示了性别组之间的区分和聚类,同时具有留一交叉验证 (LOOCV) 和没有重叠的聚类组周围的 95%置信区间。LDA 对女性和男性研究对象的准确率为 96.67%。最终的知识建立了一个使用人类气味手部气味特征预测供体类特征的工作模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4efe/10321641/6541c4085a8e/pone.0286452.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验