Wu Ruowu, Liang Yandan, Lin Lianlei, Zhang Zongwei
State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Zhengzhou 450003, China.
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China.
Sensors (Basel). 2024 Dec 7;24(23):7837. doi: 10.3390/s24237837.
Weather prediction is of great significance for human daily production activities, global extreme climate prediction, and environmental protection of the Earth. However, the existing data-based weather prediction methods cannot adequately capture the spatial and temporal evolution characteristics of the target region, which makes it difficult for the existing methods to meet practical application requirements in terms of efficiency and accuracy. Changes in weather involve both strongly correlated spatial and temporal continuation relationships, and at the same time, the variables interact with each other, so capturing the dynamic correlations among space, time, and variables is particularly important for accurate weather prediction. Therefore, we designed a spatiotemporal coupled prediction network based on convolution and Transformer for weather prediction from the perspective of multivariate spatiotemporal fields. First, we designed a spatial attention encoder-decoder to comprehensively explore spatial representations for extracting and reconstructing spatial features. Then, we designed a multi-scale spatiotemporal evolution module to obtain the spatiotemporal evolution patterns of weather using inter- and intra-frame computations. After that, in order to ensure that the model has better prediction ability for global and local hotspot areas, we designed a composite loss function based on MSE and SSIM to focus on the global and structural distribution of weather to achieve more accurate multivariate weather prediction. Finally, we demonstrated the excellent effect of STWPM in multivariate spatiotemporal field weather prediction by comprehensively evaluating the proposed algorithm with classical algorithms on the ERA5 dataset in a global region.
天气预报对人类日常生产活动、全球极端气候预测以及地球环境保护具有重要意义。然而,现有的基于数据的天气预报方法无法充分捕捉目标区域的时空演变特征,这使得现有方法在效率和准确性方面难以满足实际应用需求。天气变化既涉及强相关的时空延续关系,同时变量之间又相互作用,因此捕捉空间、时间和变量之间的动态相关性对于准确的天气预报尤为重要。因此,我们从多变量时空场的角度设计了一种基于卷积和Transformer的时空耦合预测网络用于天气预报。首先,我们设计了一个空间注意力编码器 - 解码器,以全面探索空间表示来提取和重建空间特征。然后,我们设计了一个多尺度时空演变模块,通过帧间和帧内计算来获取天气的时空演变模式。之后,为了确保模型对全局和局部热点区域具有更好的预测能力,我们设计了一种基于均方误差(MSE)和结构相似性(SSIM)的复合损失函数,以关注天气的全局和结构分布,实现更准确的多变量天气预报。最后,我们通过在全球区域的ERA5数据集上用经典算法全面评估所提出的算法,证明了时空天气预测模型(STWPM)在多变量时空场天气预报中的优异效果。