Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri, USA.
mBio. 2023 Aug 31;14(4):e0135323. doi: 10.1128/mbio.01353-23. Epub 2023 Jul 6.
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen . We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
麦角甾醇是真菌膜中的主要甾醇,对于定义膜流动性和调节细胞过程至关重要。尽管在模式酵母中已经很好地定义了麦角甾醇的合成,但在真菌发病机制的背景下,对甾醇的组织知之甚少。我们在机会性真菌病原体 中鉴定了一种逆行甾醇转运蛋白 Ysp2。我们发现,在宿主模拟条件下缺乏 Ysp2 会导致质膜中麦角甾醇异常积累、质膜内陷和细胞壁畸形,这可以通过用抗真菌药物氟康唑抑制麦角甾醇合成来功能上挽救。我们还观察到缺乏 Ysp2 的细胞表面蛋白 Pma1 定位错误,并且囊泡异常薄且易渗透。由于麦角甾醇分布受到干扰及其后果,Δ 细胞无法在生理相关环境(如宿主吞噬细胞)中存活,并且在毒力方面受到严重削弱。这些发现扩展了我们对隐球菌生物学的认识,并强调了甾醇动态平衡在真菌发病机制中的重要性。 是一种机会性真菌病原体,每年在全球范围内导致超过 100,000 人死亡。只有三种药物可用于治疗隐球菌病,这些药物在毒性、可用性、成本和耐药性方面各不相同。麦角甾醇是真菌中最丰富的甾醇,是调节膜行为的关键成分。用于隐球菌感染的两种药物,两性霉素 B 和氟康唑,靶向这种脂质及其合成,突出了它作为治疗靶点的重要性。我们发现了一种隐球菌麦角甾醇转运蛋白 Ysp2,并证明了它在隐球菌生物学和发病机制的多个方面的关键作用。这些研究表明了麦角甾醇动态平衡在毒力中的作用,加深了我们对具有已证明治疗重要性的途径的理解,并开辟了一个新的研究领域。