Suppr超能文献

心理健康与幸福感聊天机器人:用户事件日志分析。

A Mental Health and Well-Being Chatbot: User Event Log Analysis.

机构信息

Department of Accounting, Finance & Economics, Belfast, United Kingdom.

School of Psychology, Ulster University, Coleraine, United Kingdom.

出版信息

JMIR Mhealth Uhealth. 2023 Jul 6;11:e43052. doi: 10.2196/43052.

Abstract

BACKGROUND

Conversational user interfaces, or chatbots, are becoming more popular in the realm of digital health and well-being. While many studies focus on measuring the cause or effect of a digital intervention on people's health and well-being (outcomes), there is a need to understand how users really engage and use a digital intervention in the real world.

OBJECTIVE

In this study, we examine the user logs of a mental well-being chatbot called ChatPal, which is based on the concept of positive psychology. The aim of this research is to analyze the log data from the chatbot to provide insight into usage patterns, the different types of users using clustering, and associations between the usage of the app's features.

METHODS

Log data from ChatPal was analyzed to explore usage. A number of user characteristics including user tenure, unique days, mood logs recorded, conversations accessed, and total number of interactions were used with k-means clustering to identify user archetypes. Association rule mining was used to explore links between conversations.

RESULTS

ChatPal log data revealed 579 individuals older than 18 years used the app with most users being female (n=387, 67%). User interactions peaked around breakfast, lunchtime, and early evening. Clustering revealed 3 groups including "abandoning users" (n=473), "sporadic users" (n=93), and "frequent transient users" (n=13). Each cluster had distinct usage characteristics, and the features were significantly different (P<.001) across each group. While all conversations within the chatbot were accessed at least once by users, the "treat yourself like a friend" conversation was the most popular, which was accessed by 29% (n=168) of users. However, only 11.7% (n=68) of users repeated this exercise more than once. Analysis of transitions between conversations revealed strong links between "treat yourself like a friend," "soothing touch," and "thoughts diary" among others. Association rule mining confirmed these 3 conversations as having the strongest linkages and suggested other associations between the co-use of chatbot features.

CONCLUSIONS

This study has provided insight into the types of people using the ChatPal chatbot, patterns of use, and associations between the usage of the app's features, which can be used to further develop the app by considering the features most accessed by users.

摘要

背景

对话式用户界面(或聊天机器人)在数字健康和福祉领域越来越受欢迎。虽然许多研究都侧重于衡量数字干预对人们健康和福祉的原因或效果(结果),但需要了解用户如何在现实世界中真正参与和使用数字干预。

目的

本研究通过分析一款名为 ChatPal 的基于积极心理学概念的精神健康聊天机器人的用户日志,来检查其用户日志。该研究旨在分析聊天机器人的日志数据,以提供对使用模式、不同类型用户的聚类、以及应用程序功能使用之间关联的见解。

方法

对 ChatPal 的日志数据进行分析以探索使用情况。使用了一些用户特征,包括用户使用时长、独特天数、记录的情绪日志、访问的对话和总交互次数,采用 K 均值聚类来识别用户原型。使用关联规则挖掘来探索对话之间的联系。

结果

ChatPal 日志数据显示,有 579 名年龄在 18 岁以上的用户使用了该应用程序,其中大多数用户为女性(n=387,67%)。用户交互量在早餐、午餐时间和傍晚时分达到峰值。聚类揭示了 3 个群组,包括“放弃用户”(n=473)、“零星用户”(n=93)和“频繁短暂用户”(n=13)。每个群组都有不同的使用特征,且特征在各个群组之间有显著差异(P<.001)。虽然聊天机器人中的所有对话都至少被用户访问过一次,但“像对待朋友一样对待自己”的对话最受欢迎,有 29%(n=168)的用户访问过该对话。然而,只有 11.7%(n=68)的用户重复过此操作。对对话之间的转换进行分析后发现,“像对待朋友一样对待自己”、“抚慰触感”和“思绪日记”等对话之间存在很强的联系。关联规则挖掘证实了这 3 个对话之间的最强关联性,并提示了聊天机器人功能共同使用之间的其他关联。

结论

本研究深入了解了使用 ChatPal 聊天机器人的人群类型、使用模式以及应用程序功能使用之间的关联,这可以通过考虑用户最常访问的功能来进一步开发应用程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bba/10360018/7c1ac1cd6e68/mhealth_v11i1e43052_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验