Liao Jianhui, Zhang Chenshuang, Xu Xiangcong, Zhou Liangliang, Yu Bin, Lin Danying, Li Jia, Qu Junle
State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Adv Sci (Weinh). 2023 Sep;10(27):e2300947. doi: 10.1002/advs.202300947. Epub 2023 Jul 9.
Fast and precise reconstruction algorithm is desired for for multifocal structured illumination microscopy (MSIM) to obtain the super-resolution image. This work proposes a deep convolutional neural network (CNN) to learn a direct mapping from raw MSIM images to super-resolution image, which takes advantage of the computational advances of deep learning to accelerate the reconstruction. The method is validated on diverse biological structures and in vivo imaging of zebrafish at a depth of 100 µm. The results show that high-quality, super-resolution images can be reconstructed in one-third of the runtime consumed by conventional MSIM method, without compromising spatial resolution. Last but not least, a fourfold reduction in the number of raw images required for reconstruction is achieved by using the same network architecture, yet with different training data.
对于多焦点结构照明显微镜(MSIM)而言,需要快速精确的重建算法来获取超分辨率图像。这项工作提出了一种深度卷积神经网络(CNN),用于学习从原始MSIM图像到超分辨率图像的直接映射,该网络利用深度学习的计算优势来加速重建过程。该方法在多种生物结构以及深度为100 µm的斑马鱼体内成像上得到了验证。结果表明,能够在传统MSIM方法消耗的运行时间的三分之一内重建出高质量的超分辨率图像,且不影响空间分辨率。最后但同样重要的是,通过使用相同的网络架构但不同的训练数据,实现了重建所需原始图像数量减少四倍的效果。