Suppr超能文献

使用 RAVEL 和 ComBat 进行多扫描仪神经影像学数据的协调。

A multi-scanner neuroimaging data harmonization using RAVEL and ComBat.

机构信息

Intelligent System Program, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA.

Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

Neuroimage. 2021 Dec 15;245:118703. doi: 10.1016/j.neuroimage.2021.118703. Epub 2021 Nov 1.

Abstract

Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.

摘要

现代神经影像学研究经常结合来自多个扫描仪和实验条件的数据进行研究。这种数据通常包含与图像强度尺度(不同图像中的图像强度尺度不同)和扫描仪效应(来自不同扫描仪的图像包含大量技术偏差)相关的大量技术可变性。在这里,我们评估和比较了不进行任何数据转换(RAW)、使用 RAVEL 进行强度归一化、使用 ComBat 进行区域协调以及 RAVEL 和 ComBat 组合的数据分析方法的结果。该方法在一个独特的样本中进行了评估,该样本由 16 名研究参与者组成,他们在相隔几个月的时间内在 1.5T 和 3T 扫描仪上进行了扫描。神经放射学评估针对与阿尔茨海默病(AD)相关的 7 个不同感兴趣区域(ROI)进行。皮质测量和结果表明:(1)RAVEL 大大提高了图像强度的可重复性;(2)由于在受试者和图像衍生指标之间具有更一致的协调,ComBat 在区域水平协调方面优于 RAVEL 和 RAVEL-ComBat 组合;(3)与分析 RAW 图像相比,RAVEL 和 ComBat 大大减少了偏差,但 RAVEL 也导致了更大的方差;(4)与 ComBat 相比,RAVEL 的均方根偏差(RMSD)较大主要是由于其方差较大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/badb/8820090/f4932d848b05/nihms-1770946-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验