Suppr超能文献

表面等离子体共振显微镜:从单分子传感到单细胞成像

Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging.

作者信息

Zhou Xiao-Li, Yang Yunze, Wang Shaopeng, Liu Xian-Wei

机构信息

CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China.

Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.

出版信息

Angew Chem Int Ed Engl. 2020 Jan 27;59(5):1776-1785. doi: 10.1002/anie.201908806. Epub 2019 Oct 18.

Abstract

Surface plasmon resonance microscopy (SPRM) is a versatile platform for chemical and biological sensing and imaging. Great progress in exploring its applications, ranging from single-molecule sensing to single-cell imaging, has been made. In this Minireview, we introduce the principles and instrumentation of SPRM. We also summarize the broad and exciting applications of SPRM to the analysis of single entities. Finally, we discuss the challenges and limitations associated with SPRM and potential solutions.

摘要

表面等离子体共振显微镜(SPRM)是一种用于化学和生物传感及成像的多功能平台。在探索其应用方面已取得了巨大进展,涵盖从单分子传感到单细胞成像等领域。在这篇微型综述中,我们介绍了SPRM的原理和仪器设备。我们还总结了SPRM在单个实体分析方面广泛且令人兴奋的应用。最后,我们讨论了与SPRM相关的挑战和局限性以及潜在的解决方案。

相似文献

1
Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging.
Angew Chem Int Ed Engl. 2020 Jan 27;59(5):1776-1785. doi: 10.1002/anie.201908806. Epub 2019 Oct 18.
2
Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution.
Biosensors (Basel). 2024 Feb 2;14(2):84. doi: 10.3390/bios14020084.
3
Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions.
Biosens Bioelectron. 2019 Dec 1;145:111717. doi: 10.1016/j.bios.2019.111717. Epub 2019 Sep 20.
4
Surface plasmon resonance: a versatile technique for biosensor applications.
Sensors (Basel). 2015 May 5;15(5):10481-510. doi: 10.3390/s150510481.
5
Surface plasmon resonance imaging for biosensing.
IET Nanobiotechnol. 2009 Sep;3(3):71-80. doi: 10.1049/iet-nbt.2008.0012.
6
Trends in SPR Cytometry: Advances in Label-Free Detection of Cell Parameters.
Biosensors (Basel). 2018 Oct 30;8(4):102. doi: 10.3390/bios8040102.
7
Surface Plasmon Resonance Microscopy Based on Total Internal Reflection.
Biosensors (Basel). 2023 Feb 12;13(2):261. doi: 10.3390/bios13020261.
8
Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications.
Sensors (Basel). 2016 Jul 27;16(8):1175. doi: 10.3390/s16081175.
9
Two-Dimensional Surface Plasmon Resonance Imaging System for Cellular Analysis.
Methods Mol Biol. 2017;1571:31-46. doi: 10.1007/978-1-4939-6848-0_3.

引用本文的文献

2
Sensitive Imaging of Electroactive Species in Plasmonic Electrochemical Microscopy Enabled by Nanoconfinement.
ACS Electrochem. 2025 Feb 17;1(6):974-986. doi: 10.1021/acselectrochem.4c00227. eCollection 2025 Jun 5.
3
Plasmonic DNA-Barcoded Virion Nano-Oscillators for Multiplexed Quantification of Small-Molecule Binding Kinetics to Membrane Proteins.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202506464. doi: 10.1002/anie.202506464. Epub 2025 May 28.
4
Novel anti-pyroptosis drug loaded on metal-organic framework for intervertebral disc degeneration therapy.
Mater Today Bio. 2025 Apr 5;32:101729. doi: 10.1016/j.mtbio.2025.101729. eCollection 2025 Jun.
5
Digital Detection of DNA via Impedimetric Tracking of Probe Nanoparticles.
Nano Lett. 2025 Jun 25;25(25):9891-9898. doi: 10.1021/acs.nanolett.4c05324. Epub 2025 Apr 22.
6
Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures.
Small Sci. 2023 Sep 10;3(10):2300048. doi: 10.1002/smsc.202300048. eCollection 2023 Oct.
7
Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.
Adv Sci (Weinh). 2025 Mar;12(9):e2407432. doi: 10.1002/advs.202407432. Epub 2025 Jan 10.
8
A label-free optical system with a nanohole array biosensor for discriminating live single cancer cells from normal cells.
Nanophotonics. 2021 Dec 3;11(2):315-328. doi: 10.1515/nanoph-2021-0499. eCollection 2022 Jan.
10
Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects.
Chem Biomed Imaging. 2023 Dec 15;2(1):27-46. doi: 10.1021/cbmi.3c00095. eCollection 2024 Jan 22.

本文引用的文献

1
Plasmonic imaging of subcellular electromechanical deformation in mammalian cells.
J Biomed Opt. 2019 Jun;24(6):1-7. doi: 10.1117/1.JBO.24.6.066007.
2
Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination.
Sci Adv. 2019 Mar 29;5(3):eaav5335. doi: 10.1126/sciadv.aav5335. eCollection 2019 Mar.
3
Identification of Nanoparticles via Plasmonic Scattering Interferometry.
Angew Chem Int Ed Engl. 2019 Mar 22;58(13):4217-4220. doi: 10.1002/anie.201813567. Epub 2019 Feb 19.
4
Interferometric plasmonic imaging and detection of single exosomes.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10275-10280. doi: 10.1073/pnas.1804548115. Epub 2018 Sep 24.
5
Point Spread Function of Objective-Based Surface Plasmon Resonance Microscopy.
Anal Chem. 2018 Aug 7;90(15):9650-9656. doi: 10.1021/acs.analchem.8b02800. Epub 2018 Jul 17.
6
Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.
Nano Lett. 2018 Jun 13;18(6):3759-3765. doi: 10.1021/acs.nanolett.8b00993. Epub 2018 May 22.
7
Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.
ACS Nano. 2018 May 22;12(5):4186-4193. doi: 10.1021/acsnano.8b00867. Epub 2018 Mar 28.
8
Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction.
Nanoscale. 2018 Mar 15;10(11):5133-5139. doi: 10.1039/c7nr09483c.
10
Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility.
Anal Chem. 2018 Jan 2;90(1):19-39. doi: 10.1021/acs.analchem.7b04251. Epub 2017 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验