Suppr超能文献

高硅掺杂氮化镓中的纳米星

Nanostars in Highly Si-Doped GaN.

作者信息

Sawicka Marta, Turski Henryk, Sobczak Kamil, Feduniewicz-Żmuda Anna, Fiuczek Natalia, Gołyga Oliwia, Siekacz Marcin, Muziol Grzegorz, Nowak Grzegorz, Smalc-Koziorowska Julita, Skierbiszewski Czesław

机构信息

Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland.

Faculty of Chemistry, Biological, and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.

出版信息

Cryst Growth Des. 2023 Jun 11;23(7):5093-5101. doi: 10.1021/acs.cgd.3c00317. eCollection 2023 Jul 5.

Abstract

Understanding the relation between surface morphology during epitaxy of GaN:Si and its electrical properties is important from both the fundamental and application perspectives. This work evidences the formation of nanostars in highly doped GaN:Si layers with doping level ranging from 5 × 10 to 1 × 10 cm grown by plasma-assisted molecular beam epitaxy (PAMBE). Nanostars are 50-nm-wide platelets arranged in six-fold symmetry around the [0001] axis and have different electrical properties from the surrounding layer. Nanostars are formed in highly doped GaN:Si layers due to the enhanced growth rate along the -direction ⟨112̅0⟩. Then, the hexagonal-shaped growth spirals, typically observed in GaN grown on GaN/sapphire templates, develop distinct arms that extend in the -direction ⟨112̅0⟩. The nanostar surface morphology is reflected in the inhomogeneity of electrical properties at the nanoscale as evidenced in this work. Complementary techniques such as electrochemical etching (ECE), atomic force microscopy (AFM), and scanning spreading resistance microscopy (SSRM) are used to link the morphology and conductivity variations across the surface. Additionally, transmission electron microscopy (TEM) studies with high spatial resolution composition mapping by energy-dispersive X-ray spectroscopy (EDX) confirmed about 10% lower incorporation of Si in the hillock arms than in the layer. However, the lower Si content in the nanostars cannot solely be responsible for the fact that they are not etched in ECE. The compensation mechanism in the nanostars observed in GaN:Si is discussed to be an additional contribution to the local decrease in conductivity at the nanoscale.

摘要

从基础研究和应用的角度来看,了解氮化镓硅外延过程中的表面形态与其电学性质之间的关系都很重要。这项工作证明了在通过等离子体辅助分子束外延(PAMBE)生长的掺杂浓度范围为5×10至1×10 cm的高掺杂氮化镓硅层中形成了纳米星。纳米星是围绕[0001]轴呈六重对称排列的50纳米宽的薄片,并且具有与周围层不同的电学性质。由于沿〈112̅0〉方向的生长速率增强,纳米星在高掺杂的氮化镓硅层中形成。然后,通常在氮化镓/蓝宝石模板上生长的氮化镓中观察到的六边形生长螺旋,发展出沿〈112̅0〉方向延伸的独特臂。正如这项工作所证明的,纳米星表面形态反映在纳米尺度上电学性质的不均匀性上。诸如电化学蚀刻(ECE)、原子力显微镜(AFM)和扫描扩展电阻显微镜(SSRM)等互补技术被用于将表面的形态和电导率变化联系起来。此外,通过能量色散X射线光谱(EDX)进行高空间分辨率成分映射的透射电子显微镜(TEM)研究证实,小丘臂中的硅掺入量比层中的低约10%。然而,纳米星中较低的硅含量并不能完全解释它们在ECE中未被蚀刻的事实。讨论了在氮化镓硅中观察到的纳米星中的补偿机制是对纳米尺度上局部电导率降低的额外贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3821/10326854/5eb2eb9a9d45/cg3c00317_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验