Chlipała Mikołaj, Akritidis Konstantinos, Levchenko Iryna, Gibasiewicz Krzysztof, Brstilo Tara, Billet Maximilien, Van Dorpe Pol, Fiuczek Natalia, Sawicka Marta, Kuyken Bart, Turski Henryk
Institute of High Pressure Physics Polish Academy of Sciences, PAS, 01-142 Warsaw, Poland.
Photonics Research Group, INTEC Department, Ghent UniversityImec, Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium.
ACS Appl Electron Mater. 2025 May 20;7(11):4814-4821. doi: 10.1021/acsaelm.5c00259. eCollection 2025 Jun 10.
The development of complex optoelectronic devices often necessitates efficient and high-quality visible light sources. The gallium nitride (GaN) material family, widely used in constructing light-emitting diodes for general lighting, is an obvious choice for this purpose, but the highest quality devices need to be obtained on native substrates. In this study, we demonstrate the fabrication of LEDs on bulk GaN substrates, which are compatible with microtransfer printing (μTP) technology, enabling integration onto foreign wafers. The structures are grown on a heavily doped n-type sacrificial underlayer realized through plasma-assisted molecular beam epitaxy. Fully processed LEDs are undercut by using electrochemical etching to selectively remove the underlayer, resulting in a thin-film structure with a smooth bottom surface. This smooth surface facilitates the easy integration with foreign wafers. A successful transfer using a micromanipulator and μTP setup was conducted, showing an electrical performance similar to that of the original devices. This work underscores the potential of GaN-based light emitters for advanced optoelectronic applications in integrated circuits and highlights the role that μTP plays in achieving heterogeneous integration.
复杂光电器件的发展常常需要高效且高质量的可见光源。氮化镓(GaN)材料家族广泛用于制造通用照明的发光二极管,显然是实现这一目标的理想选择,但要获得最高质量的器件,需要在原生衬底上进行制备。在本研究中,我们展示了在块状GaN衬底上制造发光二极管,这些衬底与微转移印刷(μTP)技术兼容,能够集成到异质晶圆上。这些结构生长在通过等离子体辅助分子束外延实现的重掺杂n型牺牲底层上。通过电化学蚀刻选择性地去除底层,对完全加工好的发光二极管进行底切,从而得到具有光滑底面的薄膜结构。这种光滑表面便于与异质晶圆轻松集成。使用微操纵器和μTP装置成功进行了转移,转移后的器件显示出与原始器件相似的电学性能。这项工作强调了基于GaN的发光器在集成电路先进光电子应用中的潜力,并突出了μTP在实现异质集成中所起的作用。