Suppr超能文献

基于三元损失的深度卷积神经网络特征和 SVM 的鲁棒人脸表情分类。

Robust Human Face Emotion Classification Using Triplet-Loss-Based Deep CNN Features and SVM.

机构信息

Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 500-757, Republic of Korea.

出版信息

Sensors (Basel). 2023 May 15;23(10):4770. doi: 10.3390/s23104770.

Abstract

Human facial emotion detection is one of the challenging tasks in computer vision. Owing to high inter-class variance, it is hard for machine learning models to predict facial emotions accurately. Moreover, a person with several facial emotions increases the diversity and complexity of classification problems. In this paper, we have proposed a novel and intelligent approach for the classification of human facial emotions. The proposed approach comprises customized ResNet18 by employing transfer learning with the integration of triplet loss function (TLF), followed by SVM classification model. Using deep features from a customized ResNet18 trained with triplet loss, the proposed pipeline consists of a face detector used to locate and refine the face bounding box and a classifier to identify the facial expression class of discovered faces. RetinaFace is used to extract the identified face areas from the source image, and a ResNet18 model is trained on cropped face images with triplet loss to retrieve those features. An SVM classifier is used to categorize the facial expression based on the acquired deep characteristics. In this paper, we have proposed a method that can achieve better performance than state-of-the-art (SoTA) methods on JAFFE and MMI datasets. The technique is based on the triplet loss function to generate deep input image features. The proposed method performed well on the JAFFE and MMI datasets with an accuracy of 98.44% and 99.02%, respectively, on seven emotions; meanwhile, the performance of the method needs to be fine-tuned for the FER2013 and AFFECTNET datasets.

摘要

人类面部表情识别是计算机视觉中的一项具有挑战性的任务。由于类间方差较大,机器学习模型很难准确地预测面部表情。此外,一个人有几种面部表情增加了分类问题的多样性和复杂性。在本文中,我们提出了一种新的智能方法来对人类面部表情进行分类。该方法采用迁移学习和三重损失函数(TLF)集成的定制 ResNet18,然后是 SVM 分类模型。使用经过三重损失训练的定制 ResNet18 的深度特征,所提出的流水线由一个面部检测器组成,用于定位和细化面部边界框,以及一个分类器来识别发现的面部的表情类别。使用 RetinaFace 从源图像中提取识别出的面部区域,并使用裁剪后的面部图像和三重损失对 ResNet18 模型进行训练,以获取这些特征。然后使用 SVM 分类器根据获得的深度特征对表情进行分类。在本文中,我们提出的方法在 JAFFE 和 MMI 数据集上的性能优于最先进的(SoTA)方法。该技术基于三重损失函数来生成深度输入图像特征。该方法在 JAFFE 和 MMI 数据集上的表现良好,在七个情绪上的准确率分别为 98.44%和 99.02%;而对于 FER2013 和 AFFECTNET 数据集,该方法的性能需要进行微调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/344d/10223619/3117ddf89358/sensors-23-04770-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验