Suppr超能文献

融合哲学与机器学习理论的面部表情情感识别模型

Facial Expression Emotion Recognition Model Integrating Philosophy and Machine Learning Theory.

作者信息

Song Zhenjie

机构信息

School of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Psychol. 2021 Sep 27;12:759485. doi: 10.3389/fpsyg.2021.759485. eCollection 2021.

Abstract

Facial expression emotion recognition is an intuitive reflection of a person's mental state, which contains rich emotional information, and is one of the most important forms of interpersonal communication. It can be used in various fields, including psychology. As a celebrity in ancient China, Zeng Guofan's wisdom involves facial emotion recognition techniques. His book Bing Jian summarizes eight methods on how to identify people, especially how to choose the right one, which means "look at the eyes and nose for evil and righteousness, the lips for truth and falsehood; the temperament for success and fame, the spirit for wealth and fortune; the fingers and claws for ideas, the hamstrings for setback; if you want to know his consecution, you can focus on what he has said." It is said that a person's personality, mind, goodness, and badness can be showed by his face. However, due to the complexity and variability of human facial expression emotion features, traditional facial expression emotion recognition technology has the disadvantages of insufficient feature extraction and susceptibility to external environmental influences. Therefore, this article proposes a novel feature fusion dual-channel expression recognition algorithm based on machine learning theory and philosophical thinking. Specifically, the feature extracted using convolutional neural network (CNN) ignores the problem of subtle changes in facial expressions. The first path of the proposed algorithm takes the Gabor feature of the ROI area as input. In order to make full use of the detailed features of the active facial expression emotion area, first segment the active facial expression emotion area from the original face image, and use the Gabor transform to extract the emotion features of the area. Focus on the detailed description of the local area. The second path proposes an efficient channel attention network based on depth separable convolution to improve linear bottleneck structure, reduce network complexity, and prevent overfitting by designing an efficient attention module that combines the depth of the feature map with spatial information. It focuses more on extracting important features, improves emotion recognition accuracy, and outperforms the competition on the FER2013 dataset.

摘要

面部表情情感识别是对人的心理状态的直观反映,它包含丰富的情感信息,是人际交流的最重要形式之一。它可用于包括心理学在内的各个领域。作为中国古代的一位名人,曾国藩的智慧涉及面部情感识别技巧。他的《冰鉴》总结了八种识人的方法,尤其是如何挑选合适的人,即“邪正看眼鼻,真假看嘴唇;功名看气概,富贵看精神;主意看指爪,风波看脚筋;若要看条理,全在语言中”。据说一个人的性格、心思、善恶都能从脸上表现出来。然而,由于人类面部表情情感特征的复杂性和多变性,传统的面部表情情感识别技术存在特征提取不足和易受外部环境影响的缺点。因此,本文提出了一种基于机器学习理论和哲学思维的新颖的特征融合双通道表情识别算法。具体来说,使用卷积神经网络(CNN)提取的特征忽略了面部表情细微变化的问题。所提出算法的第一条路径将感兴趣区域(ROI)的Gabor特征作为输入。为了充分利用活跃面部表情情感区域的细节特征,首先从原始面部图像中分割出活跃面部表情情感区域,并使用Gabor变换提取该区域的情感特征。着重于对局部区域的详细描述。第二条路径提出了一种基于深度可分离卷积的高效通道注意力网络,以改进线性瓶颈结构,降低网络复杂度,并通过设计一个将特征图的深度与空间信息相结合的高效注意力模块来防止过拟合。它更侧重于提取重要特征,提高情感识别准确率,并且在FER2013数据集上优于竞争对手。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa57/8503687/3ca492ddeb33/fpsyg-12-759485-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验