Suppr超能文献

基于带位置编码网络的多尺度 DETR 的单板缺陷检测。

Wood Veneer Defect Detection Based on Multiscale DETR with Position Encoder Net.

机构信息

College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.

出版信息

Sensors (Basel). 2023 May 17;23(10):4837. doi: 10.3390/s23104837.

Abstract

Wood is one of the main building materials. However, defects on veneers result in substantial waste of wood resources. Traditional veneer defect detection relies on manual experience or photoelectric-based methods, which are either subjective and inefficient or need substantial investment. Computer vision-based object detection methods have been used in many realistic areas. This paper proposes a new deep learning defect detection pipeline. First, an image collection device is constructed and a total of more than 16,380 defect images are collected coupled with a mixed data augmentation method. Then, a detection pipeline is designed based on DEtection TRansformer (DETR). The original DETR needs position encoding functions to be designed and is ineffective for small object detection. To solve these problems, a position encoding net is designed with multiscale feature maps. The loss function is also redefined for much more stable training. The results from the defect dataset show that using a light feature mapping network, the proposed method is much faster with similar accuracy. Using a complex feature mapping network, the proposed method is much more accurate with similar speed.

摘要

木材是主要的建筑材料之一。然而,单板上的缺陷导致了大量的木材资源浪费。传统的单板缺陷检测依赖于人工经验或基于光电的方法,这些方法要么主观且效率低下,要么需要大量投资。基于计算机视觉的目标检测方法已经在许多现实领域得到了应用。本文提出了一种新的深度学习缺陷检测管道。首先,构建了一个图像采集设备,并结合混合数据增强方法,共采集了超过 16380 张缺陷图像。然后,基于 DETR(DEtection TRansformer)设计了一个检测管道。原始的 DETR 需要设计位置编码函数,对小目标检测效果不佳。为了解决这些问题,设计了一个带有多尺度特征图的位置编码网络。还重新定义了损失函数,以实现更稳定的训练。缺陷数据集的结果表明,使用轻量级特征映射网络,所提出的方法速度更快,准确率相当。使用复杂的特征映射网络,所提出的方法准确率更高,速度相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74fa/10222963/ab55b11d5d45/sensors-23-04837-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验