Pacurari Alina Cornelia, Bhattarai Sanket, Muhammad Abdullah, Avram Claudiu, Mederle Alexandru Ovidiu, Rosca Ovidiu, Bratosin Felix, Bogdan Iulia, Fericean Roxana Manuela, Biris Marius, Olaru Flavius, Dumitru Catalin, Tapalaga Gianina, Mavrea Adelina
MedLife HyperClinic, Eroilor de la Tisa Boulevard 28, 300551 Timisoara, Romania.
KIST Medical College, Faculty of General Medicine, Imadol Marg, Lalitpur 44700, Nepal.
Diagnostics (Basel). 2023 Jun 22;13(13):2145. doi: 10.3390/diagnostics13132145.
The application of artificial intelligence (AI) in diagnostic imaging has gained significant interest in recent years, particularly in lung cancer detection. This systematic review aims to assess the accuracy of machine learning (ML) AI algorithms in lung cancer detection, identify the ML architectures currently in use, and evaluate the clinical relevance of these diagnostic imaging methods. A systematic search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted in February 2023, encompassing the literature published up until December 2022. The review included nine studies, comprising five case-control studies, three retrospective cohort studies, and one prospective cohort study. Various ML architectures were analyzed, including artificial neural network (ANN), entropy degradation method (EDM), probabilistic neural network (PNN), support vector machine (SVM), partially observable Markov decision process (POMDP), and random forest neural network (RFNN). The ML architectures demonstrated promising results in detecting and classifying lung cancer across different lesion types. The sensitivity of the ML algorithms ranged from 0.81 to 0.99, while the specificity varied from 0.46 to 1.00. The accuracy of the ML algorithms ranged from 77.8% to 100%. The AI architectures were successful in differentiating between malignant and benign lesions and detecting small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). This systematic review highlights the potential of ML AI architectures in the detection and classification of lung cancer, with varying levels of diagnostic accuracy. Further studies are needed to optimize and validate these AI algorithms, as well as to determine their clinical relevance and applicability in routine practice.
近年来,人工智能(AI)在诊断成像中的应用引起了广泛关注,尤其是在肺癌检测方面。本系统综述旨在评估机器学习(ML)人工智能算法在肺癌检测中的准确性,确定目前使用的ML架构,并评估这些诊断成像方法的临床相关性。2023年2月,我们对PubMed、科学网、Cochrane和Scopus数据库进行了系统检索,涵盖截至2022年12月发表的文献。该综述纳入了9项研究,包括5项病例对照研究、3项回顾性队列研究和1项前瞻性队列研究。分析了各种ML架构,包括人工神经网络(ANN)、熵降解方法(EDM)、概率神经网络(PNN)、支持向量机(SVM)、部分可观测马尔可夫决策过程(POMDP)和随机森林神经网络(RFNN)。这些ML架构在检测和分类不同病变类型的肺癌方面显示出有前景的结果。ML算法的敏感性范围为0.81至0.99,而特异性则在0.46至1.00之间变化。ML算法的准确性范围为77.8%至100%。AI架构成功地区分了恶性和良性病变,并检测出小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)。本系统综述强调了ML人工智能架构在肺癌检测和分类中的潜力,其诊断准确性各不相同。需要进一步研究来优化和验证这些AI算法,以及确定它们在常规实践中的临床相关性和适用性。
Comput Struct Biotechnol J. 2021
Cancers (Basel). 2023-3-18
Clin Transl Oncol. 2025-6-4
J Med Internet Res. 2025-4-1
Indian J Surg Oncol. 2025-2
Front Artif Intell. 2024-11-27
Diagnostics (Basel). 2024-9-7
Cancers (Basel). 2024-6-30
Diagnostics (Basel). 2023-2-22
J Clin Med. 2023-1-22
Biomed Res Int. 2022
J R Soc Interface. 2022-6
BMC Bioinformatics. 2022-5-12
Transl Cancer Res. 2021-5