Ji Hengyi, Teng Guanghui, Yu Jionghua, Wen Yanbin, Deng Huixiang, Zhuang Yanrong
College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China.
Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
Animals (Basel). 2023 Jun 23;13(13):2078. doi: 10.3390/ani13132078.
Aggressive behavior among pigs is a significant social issue that has severe repercussions on both the profitability and welfare of pig farms. Due to the complexity of aggression, recognizing it requires the consideration of both spatial and temporal features. To address this problem, we proposed an efficient method that utilizes the temporal shift module (TSM) for automatic recognition of pig aggression. In general, TSM is inserted into four 2D convolutional neural network models, including ResNet50, ResNeXt50, DenseNet201, and ConvNext-t, enabling the models to process both spatial and temporal features without increasing the model parameters and computational complexity. The proposed method was evaluated on the dataset established in this study, and the results indicate that the ResNeXt50-T (TSM inserted into ResNeXt50) model achieved the best balance between recognition accuracy and model parameters. On the test set, the ResNeXt50-T model achieved accuracy, recall, precision, F1 score, speed, and model parameters of 95.69%, 95.25%, 96.07%, 95.65%, 29 ms, and 22.98 M, respectively. These results show that the proposed method can effectively improve the accuracy of recognizing pig aggressive behavior and provide a reference for behavior recognition in actual scenarios of smart livestock farming.
猪的攻击行为是一个重大的社会问题,对养猪场的盈利能力和福利都有严重影响。由于攻击行为的复杂性,识别它需要考虑空间和时间特征。为了解决这个问题,我们提出了一种有效的方法,该方法利用时间移位模块(TSM)自动识别猪的攻击行为。一般来说,TSM被插入到四个二维卷积神经网络模型中,包括ResNet50、ResNeXt50、DenseNet201和ConvNext-t,使这些模型能够在不增加模型参数和计算复杂度的情况下处理空间和时间特征。该方法在本研究建立的数据集上进行了评估,结果表明ResNeXt50-T(TSM插入到ResNeXt50中)模型在识别准确率和模型参数之间达到了最佳平衡。在测试集上,ResNeXt50-T模型的准确率、召回率、精确率、F1分数、速度和模型参数分别为95.69%、95.25%、96.07%、95.65%、29毫秒和22.98M。这些结果表明,该方法能够有效提高识别猪攻击行为的准确率,为智能畜牧养殖实际场景中的行为识别提供参考。