Juhos Roland, Kusza Szilvia, Bilicki Vilmos, Bagi Zoltán
Centre for Agricultural Genomics and Biotechnology, University of Debrecen, 4032 Debrecen, Hungary.
Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary.
Biology (Basel). 2025 Jun 26;14(7):771. doi: 10.3390/biology14070771.
The presence of aggressive behavior in livestock creates major difficulties for animal welfare, farm safety, economic performance and selective breeding. The two innovative tools of deep learning-based video analysis and transcriptomic profiling have recently appeared to aid the understanding and monitoring of such behaviors. This scoping review assesses the current use of these two methods for aggression research across livestock species and identifies trends while revealing unaddressed gaps in existing literature. A scoping literature search was performed through the PubMed, Scopus and Web of Science databases to identify articles from 2014 to April 2025. The research included 268 original studies which were divided into 250 AI-driven behavioral phenotyping papers and 18 transcriptomic investigations without any studies combining both approaches. Most research focused on economically significant species, including pigs and cattle, yet poultry and small ruminants, along with camels and fish and other species, received limited attention. The main developments include convolutional neural network (CNN)-based object detection and pose estimation systems, together with the transcriptomic identification of molecular pathways that link to aggression and stress. The main barriers to progress in the field include inconsistent behavioral annotation and insufficient real-farm validation together with limited cross-modal integration. Standardized behavior definitions, together with multimodal datasets and integrated pipelines that link phenotypic and molecular data, should be developed according to our proposal. These innovations will speed up the advancement of livestock welfare alongside precision breeding and sustainable animal production.
家畜的攻击性行为给动物福利、农场安全、经济绩效和选择性育种带来了重大困难。基于深度学习的视频分析和转录组分析这两种创新工具最近出现,有助于理解和监测此类行为。本综述评估了这两种方法目前在跨家畜物种的攻击行为研究中的应用,确定了趋势,同时揭示了现有文献中未解决的差距。通过PubMed、Scopus和Web of Science数据库进行了文献综述搜索,以识别2014年至2025年4月的文章。该研究包括268项原创研究,分为250篇人工智能驱动的行为表型分析论文和18篇转录组学研究,没有任何将两种方法结合的研究。大多数研究集中在具有经济重要性的物种上,包括猪和牛,而家禽和小型反刍动物,以及骆驼、鱼类和其他物种受到的关注有限。主要进展包括基于卷积神经网络(CNN)的目标检测和姿态估计系统,以及与攻击和应激相关的分子途径的转录组学鉴定。该领域进展的主要障碍包括行为注释不一致、实际农场验证不足以及跨模态整合有限。根据我们的提议,应制定标准化的行为定义,以及将表型和分子数据联系起来的多模态数据集和集成管道。这些创新将加快家畜福利以及精准育种和可持续动物生产的发展。