Suppr超能文献

一种用于多只奶山羊的实时轻量级行为识别模型。

A Real-Time Lightweight Behavior Recognition Model for Multiple Dairy Goats.

作者信息

Wang Xiaobo, Hu Yufan, Wang Meili, Li Mei, Zhao Wenxiao, Mao Rui

机构信息

College of Information Engineering, Northwest A&F University, Yangling 712100, China.

Shaanxi Engineering Research Center of Agriculture Information Intelligent Perception and Analysis, Yangling 712100, China.

出版信息

Animals (Basel). 2024 Dec 19;14(24):3667. doi: 10.3390/ani14243667.

Abstract

Livestock behavior serves as a crucial indicator of physiological health. Leveraging deep learning techniques to automatically recognize dairy goat behaviors, particularly abnormal ones, enables early detection of potential health and environmental issues. To address the challenges of recognizing small-target behaviors in complex environments, a multi-scale and lightweight behavior recognition model for dairy goats called GSCW-YOLO was proposed. The model integrates Gaussian Context Transformation (GCT) and the Content-Aware Reassembly of Features (CARAFE) upsampling operator, enhancing the YOLOv8n framework's attention to behavioral features, reducing interferences from complex backgrounds, and improving the ability to distinguish subtle behavior differences. Additionally, GSCW-YOLO incorporates a small-target detection layer and optimizes the Wise-IoU loss function, increasing its effectiveness in detecting distant small-target behaviors and transient abnormal behaviors in surveillance videos. Data for this study were collected via video surveillance under varying lighting conditions and evaluated on a self-constructed dataset comprising 9213 images. Experimental results demonstrated that the GSCW-YOLO model achieved a precision of 93.5%, a recall of 94.1%, and a mean Average Precision (mAP) of 97.5%, representing improvements of 3, 3.1, and 2 percentage points, respectively, compared to the YOLOv8n model. Furthermore, GSCW-YOLO is highly efficient, with a model size of just 5.9 MB and a frame per second (FPS) of 175. It outperforms popular models such as CenterNet, EfficientDet, and other YOLO-series networks, providing significant technical support for the intelligent management and welfare-focused breeding of dairy goats, thus advancing the modernization of the dairy goat industry.

摘要

家畜行为是生理健康的关键指标。利用深度学习技术自动识别奶山羊行为,尤其是异常行为,能够早期发现潜在的健康和环境问题。为应对在复杂环境中识别小目标行为的挑战,提出了一种名为GSCW-YOLO的奶山羊多尺度轻量级行为识别模型。该模型集成了高斯上下文变换(GCT)和特征内容感知重组(CARAFE)上采样算子,增强了YOLOv8n框架对行为特征的关注,减少了复杂背景的干扰,提高了区分细微行为差异的能力。此外,GSCW-YOLO包含一个小目标检测层,并优化了Wise-IoU损失函数,提高了其在检测监控视频中远距离小目标行为和短暂异常行为方面的有效性。本研究的数据通过在不同光照条件下的视频监控收集,并在一个由9213张图像组成的自建数据集上进行评估。实验结果表明,GSCW-YOLO模型的精度达到93.5%,召回率为94.1%,平均精度均值(mAP)为97.5%,与YOLOv8n模型相比,分别提高了3、3.1和2个百分点。此外,GSCW-YOLO效率极高,模型大小仅为5.9 MB,每秒帧数(FPS)为175。它优于CenterNet、EfficientDet等流行模型以及其他YOLO系列网络,为奶山羊的智能管理和以福利为重点的养殖提供了重要的技术支持,从而推动了奶山羊产业的现代化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eabf/11727147/ccd17c6894c5/animals-14-03667-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验