Lastwika Kristin J, Wu Wei, Zhang Yuzheng, Ma Ningxin, Zečević Mladen, Pipavath Sudhakar N J, Randolph Timothy W, Houghton A McGarry, Nair Viswam S, Lampe Paul D, Kinahan Paul E
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Translational Research Program, Public Health Sciences Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
Cancers (Basel). 2023 Jun 29;15(13):3418. doi: 10.3390/cancers15133418.
The clinical management of patients with indeterminate pulmonary nodules is associated with unintended harm to patients and better methods are required to more precisely quantify lung cancer risk in this group. Here, we combine multiple noninvasive approaches to more accurately identify lung cancer in indeterminate pulmonary nodules. We analyzed 94 quantitative radiomic imaging features and 41 qualitative semantic imaging variables with molecular biomarkers from blood derived from an antibody-based microarray platform that determines protein, cancer-specific glycan, and autoantibody-antigen complex content with high sensitivity. From these datasets, we created a PSR (plasma, semantic, radiomic) risk prediction model comprising nine blood-based and imaging biomarkers with an area under the receiver operating curve (AUROC) of 0.964 that when tested in a second, independent cohort yielded an AUROC of 0.846. Incorporating known clinical risk factors (age, gender, and smoking pack years) for lung cancer into the PSR model improved the AUROC to 0.897 in the second cohort and was more accurate than a well-characterized clinical risk prediction model (AUROC = 0.802). Our findings support the use of a multi-omics approach to guide the clinical management of indeterminate pulmonary nodules.
对肺部结节性质不确定的患者进行临床管理可能会给患者带来意外伤害,因此需要更好的方法来更精确地量化该群体患肺癌的风险。在此,我们结合多种非侵入性方法,以更准确地识别肺部结节性质不确定患者中的肺癌。我们分析了94个定量放射组学成像特征和41个定性语义成像变量,并将其与基于抗体微阵列平台的血液分子生物标志物相结合,该平台能高灵敏度地测定蛋白质、癌症特异性聚糖和自身抗体 - 抗原复合物含量。从这些数据集中,我们创建了一个PSR(血浆、语义、放射组学)风险预测模型,该模型包含9种基于血液和成像的生物标志物,其受试者操作特征曲线下面积(AUROC)为0.964,在第二个独立队列中进行测试时AUROC为0.846。将已知的肺癌临床风险因素(年龄、性别和吸烟包年数)纳入PSR模型后,第二个队列中的AUROC提高到了0.897,且比一个特征明确的临床风险预测模型(AUROC = 0.802)更准确。我们的研究结果支持使用多组学方法来指导肺部结节性质不确定患者的临床管理。