Suppr超能文献

通过多组学分析揭示蜘蛛丝高性能的分子机制。

Molecular mechanisms of the high performance of spider silks revealed through multi-omics analysis.

作者信息

Watanabe Yasuha, Arakawa Kazuharu

机构信息

Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.

Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan.

出版信息

Biophys Physicobiol. 2023 Mar 10;20(1):e200014. doi: 10.2142/biophysico.bppb-v20.0014. eCollection 2023.

Abstract

Spider silk is considered a promising next-generation biomaterial due to its exceptional toughness, coupled with its renewability and biodegradability. Contrary to the conventional view that spider silk is mainly composed of two types of silk proteins (spidroins), MaSp1 and MaSp2, multi-omics strategies are increasingly revealing that the inclusion of complex components confers the higher mechanical properties to the material. In this review, we focus on several recent findings that report essential components and mechanisms that are necessary to reproduce the properties of natural spider silk. First, we discuss the discovery of MaSp3, a newly identified spidroin that is a major component in the composition of spider silk, in addition to the previously understood MaSp1 and MaSp2. Moreover, the role of the Spider-silk Constituting Element (SpiCE), which is present in trace amounts but has been found to significantly increase the tensile strength of artificial spider silk, is explored. We also delve into the process of spidroin fibril formation through liquid-liquid phase separation (LLPS) that forms the hierarchical structure of spider silk. In addition, we review the correlation between amino acid sequences and mechanical properties such as toughness and supercontraction, as revealed by an analysis of 1,000 spiders. In conclusion, these recent findings contribute to the comprehensive understanding of the mechanisms that give spider silk its high mechanical properties and help to improve artificial spider silk production.

摘要

蜘蛛丝因其卓越的韧性,以及可再生性和生物降解性,被认为是一种很有前景的下一代生物材料。与传统观点认为蜘蛛丝主要由两种丝蛋白(蜘蛛丝蛋白),即MaSp1和MaSp2组成不同,多组学策略越来越多地揭示,复杂成分的加入赋予了这种材料更高的机械性能。在这篇综述中,我们聚焦于最近的几项研究发现,这些发现报道了重现天然蜘蛛丝特性所需的关键成分和机制。首先,我们讨论了MaSp3的发现,它是一种新鉴定出的蜘蛛丝蛋白,是蜘蛛丝组成中的主要成分,此外还有之前已知的MaSp1和MaSp2。此外,还探讨了蜘蛛丝构成元素(SpiCE)的作用,它含量极少,但已被发现能显著提高人造蜘蛛丝的拉伸强度。我们还深入研究了通过液-液相分离(LLPS)形成蜘蛛丝分级结构的蜘蛛丝蛋白原纤维形成过程。此外,我们回顾了对1000只蜘蛛的分析所揭示的氨基酸序列与韧性和超收缩等机械性能之间的相关性。总之,这些最新发现有助于全面理解赋予蜘蛛丝高机械性能的机制,并有助于改进人造蜘蛛丝的生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32c2/10338049/7f50c05f37e7/20_e200014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验