Suppr超能文献

基于人工智能检测多发性硬化症患者的磁共振成像对比增强病变。

AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis.

作者信息

Schlaeger Sarah, Shit Suprosanna, Eichinger Paul, Hamann Marco, Opfer Roland, Krüger Julia, Dieckmeyer Michael, Schön Simon, Mühlau Mark, Zimmer Claus, Kirschke Jan S, Wiestler Benedikt, Hedderich Dennis M

机构信息

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.

jung diagnostics GmbH, Hamburg, Germany.

出版信息

Insights Imaging. 2023 Jul 16;14(1):123. doi: 10.1186/s13244-023-01460-3.

Abstract

BACKGROUND

Contrast-enhancing (CE) lesions are an important finding on brain magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) but can be missed easily. Automated solutions for reliable CE lesion detection are emerging; however, independent validation of artificial intelligence (AI) tools in the clinical routine is still rare.

METHODS

A three-dimensional convolutional neural network for CE lesion segmentation was trained externally on 1488 datasets of 934 MS patients from 81 scanners using concatenated information from FLAIR and T1-weighted post-contrast imaging. This externally trained model was tested on an independent dataset comprising 504 T1-weighted post-contrast and FLAIR image datasets of MS patients from clinical routine. Two neuroradiologists (R1, R2) labeled CE lesions for gold standard definition in the clinical test dataset. The algorithmic output was evaluated on both patient- and lesion-level.

RESULTS

On a patient-level, recall, specificity, precision, and accuracy of the AI tool to predict patients with CE lesions were 0.75, 0.99, 0.91, and 0.96. The agreement between the AI tool and both readers was within the range of inter-rater agreement (Cohen's kappa; AI vs. R1: 0.69; AI vs. R2: 0.76; R1 vs. R2: 0.76). On a lesion-level, false negative lesions were predominately found in infratentorial location, significantly smaller, and at lower contrast than true positive lesions (p < 0.05).

CONCLUSIONS

AI-based identification of CE lesions on brain MRI is feasible, approaching human reader performance in independent clinical data and might be of help as a second reader in the neuroradiological assessment of active inflammation in MS patients.

CRITICAL RELEVANCE STATEMENT

Al-based detection of contrast-enhancing multiple sclerosis lesions approaches human reader performance, but careful visual inspection is still needed, especially for infratentorial, small and low-contrast lesions.

摘要

背景

强化(CE)病灶是多发性硬化症(MS)患者脑磁共振成像(MRI)的一项重要发现,但容易被漏诊。用于可靠检测CE病灶的自动化解决方案正在兴起;然而,人工智能(AI)工具在临床常规中的独立验证仍然很少见。

方法

使用来自液体衰减反转恢复序列(FLAIR)和T1加权增强成像的拼接信息,在来自81台扫描仪的934例MS患者的1488个数据集上对用于CE病灶分割的三维卷积神经网络进行外部训练。该外部训练模型在一个独立数据集上进行测试,该数据集包含来自临床常规的504例MS患者的T1加权增强和FLAIR图像数据集。两名神经放射科医生(R1、R2)在临床测试数据集中标记CE病灶以进行金标准定义。在患者和病灶层面评估算法输出。

结果

在患者层面,AI工具预测有CE病灶患者的召回率、特异性、精确率和准确率分别为0.75、0.99、0.91和0.96。AI工具与两位阅片者之间的一致性在阅片者间一致性范围内(Cohen's kappa;AI与R1:0.69;AI与R2:0.76;R1与R2:0.76)。在病灶层面,假阴性病灶主要位于幕下,比真阳性病灶明显更小且对比度更低(p<0.05)。

结论

基于AI的脑MRI上CE病灶识别是可行的,在独立临床数据中接近人类阅片者的表现,并且在MS患者活动性炎症的神经放射学评估中作为第二阅片者可能会有所帮助。

关键相关性声明

基于AI的多发性硬化症强化病灶检测接近人类阅片者的表现,但仍需要仔细的视觉检查,尤其是对于幕下、小的和低对比度的病灶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ae5/10350445/c076afc72150/13244_2023_1460_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验