Suppr超能文献

基于磁共振成像,利用深度学习对胶质瘤肿瘤进行自动分割和分类以评估治疗反应

Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging.

作者信息

Papi Zahra, Fathi Sina, Dalvand Fatemeh, Vali Mahsa, Yousefi Ali, Tabatabaei Mohammad Hemmatyar, Amouheidari Alireza, Abedi Iraj

机构信息

Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Neuroinformatics. 2023 Oct;21(4):641-650. doi: 10.1007/s12021-023-09640-8. Epub 2023 Jul 17.

Abstract

Glioma is the most common primary intracranial neoplasm in adults. Radiotherapy is a treatment approach in glioma patients, and Magnetic Resonance Imaging (MRI) is a beneficial diagnostic tool in treatment planning. Treatment response assessment in glioma patients is usually based on the Response Assessment in Neuro Oncology (RANO) criteria. The limitation of assessment based on RANO is two-dimensional (2D) manual measurements. Deep learning (DL) has great potential in neuro-oncology to improve the accuracy of response assessment. In the current research, firstly, the BraTS 2018 Challenge dataset included 210 HGG and 75 LGG were applied to train a designed U-Net network for automatic tumor and intra-tumoral segmentation, followed by training of the designed classifier with transfer learning for determining grading HGG and LGG. Then, designed networks were employed for the segmentation and classification of local MRI images of 49 glioma patients pre and post-radiotherapy. The results of tumor segmentation and its intra-tumoral regions were utilized to determine the volume of different regions and treatment response assessment. Treatment response assessment demonstrated that radiotherapy is effective on the whole tumor and enhancing region with p-value ≤ 0.05 with a 95% confidence level, while it did not affect necrosis and peri-tumoral edema regions. This work demonstrated the potential of using deep learning in MRI images to provide a beneficial tool in the automated treatment response assessment so that the patient can obtain the best treatment.

摘要

胶质瘤是成人中最常见的原发性颅内肿瘤。放射治疗是胶质瘤患者的一种治疗方法,磁共振成像(MRI)是治疗计划中一种有益的诊断工具。胶质瘤患者的治疗反应评估通常基于神经肿瘤学反应评估(RANO)标准。基于RANO进行评估的局限性在于二维(2D)手动测量。深度学习(DL)在神经肿瘤学中具有巨大潜力,可提高反应评估的准确性。在当前研究中,首先,将包含210例高级别胶质瘤(HGG)和75例低级别胶质瘤(LGG)的BraTS 2018挑战赛数据集应用于训练一个设计好的U-Net网络,用于自动肿瘤和肿瘤内分割,随后使用迁移学习训练设计好的分类器,以确定HGG和LGG的分级。然后,将设计好的网络用于49例胶质瘤患者放疗前后局部MRI图像的分割和分类。利用肿瘤分割及其肿瘤内区域的结果来确定不同区域的体积和治疗反应评估。治疗反应评估表明,放射治疗对整个肿瘤和强化区域有效,p值≤0.05,置信水平为95%,而对坏死和肿瘤周围水肿区域无影响。这项工作证明了在MRI图像中使用深度学习的潜力,可为自动治疗反应评估提供一种有益工具,从而使患者能够获得最佳治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验