Suppr超能文献

分析聚类连续响应变量的有序回归模型。

Analyzing clustered continuous response variables with ordinal regression models.

机构信息

Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.

Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA.

出版信息

Biometrics. 2023 Dec;79(4):3764-3777. doi: 10.1111/biom.13904. Epub 2023 Jul 17.

Abstract

Continuous response data are regularly transformed to meet regression modeling assumptions. However, approaches taken to identify the appropriate transformation can be ad hoc and can increase model uncertainty. Further, the resulting transformations often vary across studies leading to difficulties with synthesizing and interpreting results. When a continuous response variable is measured repeatedly within individuals or when continuous responses arise from clusters, analyses have the additional challenge caused by within-individual or within-cluster correlations. We extend a widely used ordinal regression model, the cumulative probability model (CPM), to fit clustered, continuous response data using generalized estimating equations for ordinal responses. With the proposed approach, estimates of marginal model parameters, cumulative distribution functions , expectations, and quantiles conditional on covariates can be obtained without pretransformation of the response data. While computational challenges arise with large numbers of distinct values of the continuous response variable, we propose feasible and computationally efficient approaches to fit CPMs under commonly used working correlation structures. We study finite sample operating characteristics of the estimators via simulation and illustrate their implementation with two data examples. One studies predictors of CD4:CD8 ratios in a cohort living with HIV, and the other investigates the association of a single nucleotide polymorphism and lung function decline in a cohort with early chronic obstructive pulmonary disease.

摘要

连续响应数据通常会转换以满足回归建模假设。然而,用于确定适当转换的方法可能是特定的,并且会增加模型不确定性。此外,由于研究之间的转换方法不同,导致综合和解释结果变得困难。当连续响应变量在个体内被多次测量或连续响应来自聚类时,分析会受到个体内或聚类内相关性引起的额外挑战。我们扩展了一种广泛使用的有序回归模型,累积概率模型(CPM),使用广义估计方程对聚类的连续响应数据进行拟合有序响应。通过所提出的方法,可以在不对响应数据进行预转换的情况下获得边际模型参数、累积分布函数、条件协变量的期望和分位数的估计值。虽然在连续响应变量的大量不同值的情况下会出现计算挑战,但我们提出了在常用工作相关结构下拟合 CPM 的可行且计算高效的方法。我们通过模拟研究了估计量的有限样本工作特性,并通过两个数据示例说明了它们的实现。一个研究了艾滋病毒感染者队列中 CD4:CD8 比值的预测因子,另一个研究了早期慢性阻塞性肺疾病队列中单个核苷酸多态性与肺功能下降的关联。

相似文献

2
Modeling continuous response variables using ordinal regression.使用有序回归对连续响应变量进行建模。
Stat Med. 2017 Nov 30;36(27):4316-4335. doi: 10.1002/sim.7433. Epub 2017 Sep 5.
4
An empirical comparison of two novel transformation models.两种新型转换模型的实证比较。
Stat Med. 2020 Feb 28;39(5):562-576. doi: 10.1002/sim.8425. Epub 2019 Dec 6.

本文引用的文献

3
An empirical comparison of two novel transformation models.两种新型转换模型的实证比较。
Stat Med. 2020 Feb 28;39(5):562-576. doi: 10.1002/sim.8425. Epub 2019 Dec 6.
5
One-Step Generalized Estimating Equations with Large Cluster Sizes.具有大聚类规模的一步广义估计方程
J Comput Graph Stat. 2017;26(3):734-737. doi: 10.1080/10618600.2017.1321552. Epub 2017 Jul 27.
6
Modeling continuous response variables using ordinal regression.使用有序回归对连续响应变量进行建模。
Stat Med. 2017 Nov 30;36(27):4316-4335. doi: 10.1002/sim.7433. Epub 2017 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验