Varghese Abin, Pandey Adityanarayan H, Sharma Pooja, Yin Yuefeng, Medhekar Nikhil V, Lodha Saurabh
Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
Nano Lett. 2024 Jul 17;24(28):8472-8480. doi: 10.1021/acs.nanolett.4c00357. Epub 2024 Jul 1.
Strain can modulate bandgap and carrier mobilities in two-dimensional (2D) materials. Conventional strain-application methodologies relying on flexible/patterned/nanoindented substrates are limited by low thermal tolerance, poor tunability, and/or scalability. Here, we leverage the converse piezoelectric effect to electrically generate and control strain transfer from a piezoelectric thin film to electromechanically coupled 2D MoS. Electrical bias polarity change across the piezo film tunes the nature of strain transferred to MoS from compressive (∼0.23%) to tensile (∼0.14%) as verified through Raman and photoluminescence spectroscopies and substantiated by density functional theory calculations. The device architecture, on silicon substrate, integrates an MoS field-effect transistor on a metal-piezoelectric-metal stack enabling strain modulation of transistor drain current (130×), on/off ratio (150×), and mobility (1.19×) with high precision, reversibility, and resolution. Large, tunable tensile (1056) and compressive (-1498) strain gauge factors, electrical strain modulation, and high thermal tolerance promise facile integration with silicon-based CMOS and micro-electromechanical systems.
应变可以调节二维(2D)材料中的带隙和载流子迁移率。依赖于柔性/图案化/纳米压痕衬底的传统应变施加方法受到低热耐受性、可调性差和/或可扩展性的限制。在这里,我们利用逆压电效应来电产生和控制从压电薄膜到机电耦合二维MoS的应变传递。通过拉曼光谱和光致发光光谱验证,并经密度泛函理论计算证实,压电薄膜上的电偏压极性变化可调节从压缩(约0.23%)到拉伸(约0.14%)传递到MoS的应变性质。该器件架构基于硅衬底,在金属 - 压电 - 金属堆栈上集成了一个MoS场效应晶体管,能够高精度、可逆且高分辨率地对应变进行调制,从而实现晶体管漏极电流(130倍)、开/关比(150倍)和迁移率(1.19倍)的调制。大的、可调的拉伸(1056)和压缩(-1498)应变计因子、电应变调制以及高热耐受性使得该器件有望与基于硅的CMOS和微机电系统轻松集成。