Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA.
Int J Med Inform. 2023 Sep;177:105144. doi: 10.1016/j.ijmedinf.2023.105144. Epub 2023 Jul 11.
Rehabilitation research focuses on determining the components of a treatment intervention, the mechanism of how these components lead to recovery and rehabilitation, and ultimately the optimal intervention strategies to maximize patients' physical, psychologic, and social functioning. Traditional randomized clinical trials that study and establish new interventions face challenges, such as high cost and time commitment. Observational studies that use existing clinical data to observe the effect of an intervention have shown several advantages over RCTs. Electronic Health Records (EHRs) have become an increasingly important resource for conducting observational studies. To support these studies, we developed a clinical research datamart, called ReDWINE (Rehabilitation Datamart With Informatics iNfrastructure for rEsearch), that transforms the rehabilitation-related EHR data collected from the UPMC health care system to the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to facilitate rehabilitation research. The standardized EHR data stored in ReDWINE will further reduce the time and effort required by investigators to pool, harmonize, clean, and analyze data from multiple sources, leading to more robust and comprehensive research findings. ReDWINE also includes deployment of data visualization and data analytics tools to facilitate cohort definition and clinical data analysis. These include among others the Open Health Natural Language Processing (OHNLP) toolkit, a high-throughput NLP pipeline, to provide text analytical capabilities at scale in ReDWINE. Using this comprehensive representation of patient data in ReDWINE for rehabilitation research will facilitate real-world evidence for health interventions and outcomes.
康复研究的重点是确定治疗干预的组成部分、这些组成部分如何导致康复,以及最终实现使患者身体、心理和社会功能最大化的最佳干预策略。研究和建立新干预措施的传统随机临床试验面临着一些挑战,例如成本高和时间投入大。利用现有临床数据观察干预效果的观察性研究显示出比 RCT 有几个优势。电子健康记录 (EHR) 已成为进行观察性研究的一个越来越重要的资源。为了支持这些研究,我们开发了一个临床研究数据集市,称为 ReDWINE(康复数据集市与信息学基础设施进行研究),它将从 UPMC 医疗保健系统收集的与康复相关的 EHR 数据转换为观察性健康数据科学和信息学 (OHDSI) 观察性医疗结果伙伴关系 (OMOP) 通用数据模型 (CDM),以促进康复研究。存储在 ReDWINE 中的标准化 EHR 数据将进一步减少研究人员从多个来源汇集、协调、清理和分析数据所需的时间和精力,从而得出更强大和全面的研究结果。ReDWINE 还包括部署数据可视化和数据分析工具,以方便队列定义和临床数据分析。其中包括 Open Health Natural Language Processing (OHNLP) 工具包,这是一个高通量 NLP 管道,在 ReDWINE 中提供大规模的文本分析功能。使用 ReDWINE 中康复研究的患者数据的这种全面表示形式将促进健康干预措施和结果的真实世界证据。