Suppr超能文献

机器学习分析牙科胶粘剂的微拉伸粘结强度。

Machine Learning Analysis of Microtensile Bond Strength of Dental Adhesives.

机构信息

Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, MO, USA.

出版信息

J Dent Res. 2023 Aug;102(9):1022-1030. doi: 10.1177/00220345231175868. Epub 2023 Jul 18.

Abstract

Dental adhesives provide retention to composite fillings in dental restorations. Microtensile bond strength (µTBS) test is the most used laboratory test to evaluate bonding performance of dental adhesives. The traditional approach for developing dental adhesives involves repetitive laboratory measurements, which consumes enormous time and resources. Machine learning (ML) is a promising tool for accelerating this process. This study aimed to develop ML models to predict the µTBS of dental adhesives using their chemical features and to identify important contributing factors for µTBS. Specifically, the chemical composition and µTBS information of 81 dental adhesives were collected from the manufacturers and the literature. The average µTBS value of each adhesive was labeled as either 0 (if <36 MPa) or 1 (if ≥36 MPa) to denote the low and high µTBS classes. The initial 9-feature data set comprised pH, HEMA, BisGMA, UDMA, MDP, PENTA, filler, fluoride, and organic solvent (OS) as input features. Nine ML algorithms, including logistic regression, k-nearest neighbor, support vector machine, decision trees and tree-based ensembles, and multilayer perceptron, were implemented for model development. Feature importance analysis identified MDP, pH, OS, and HEMA as the top 4 contributing features, which were used to construct a 4-feature data set. Grid search with stratified 10-fold cross-validation (CV) was employed for hyperparameter tunning and model performance evaluation using 2 metrics, the area under the receiver operating characteristic curve (AUC) and accuracy. The 4-feature data set generated slightly better performance than the 9-feature data set, with the highest AUC score of 0.90 and accuracy of 0.81 based on stratified CV. In conclusion, ML is an effective tool for predicting dental adhesives with low and high µTBS values and for identifying important chemical features contributing to the µTBS. The ML-based data-driven approach has great potential to accelerate the discovery of new dental adhesives and other dental materials.

摘要

牙科黏合剂为牙修复体中的复合填充物提供固位力。微拉伸黏结强度(µTBS)测试是评估牙科黏合剂黏结性能最常用的实验室测试。传统的开发牙科黏合剂的方法涉及反复的实验室测量,这耗费了大量的时间和资源。机器学习(ML)是加速这一过程的一种很有前途的工具。本研究旨在开发 ML 模型,通过其化学特性来预测牙科黏合剂的 µTBS,并确定对 µTBS 有重要贡献的因素。具体来说,从制造商和文献中收集了 81 种牙科黏合剂的化学组成和 µTBS 信息。将每种黏合剂的平均 µTBS 值标记为 0(如果<36 MPa)或 1(如果≥36 MPa),以表示低 µTBS 和高 µTBS 类别。初始的 9 特征数据集由 pH 值、HEMA、BisGMA、UDMA、MDP、PENTA、填料、氟化物和有机溶剂(OS)作为输入特征组成。为了开发模型,实现了包括逻辑回归、k-最近邻、支持向量机、决策树和基于树的集成以及多层感知器在内的 9 种 ML 算法。特征重要性分析确定 MDP、pH 值、OS 和 HEMA 为前 4 个重要特征,这些特征用于构建一个 4 特征数据集。采用网格搜索和分层 10 折交叉验证(CV)进行超参数调整,并使用两个指标(接收器操作特征曲线下的面积(AUC)和准确性)评估模型性能。4 特征数据集的性能略优于 9 特征数据集,基于分层 CV 的最高 AUC 得分为 0.90,准确性为 0.81。总之,ML 是一种预测具有低和高 µTBS 值的牙科黏合剂和识别对 µTBS 有重要贡献的化学特征的有效工具。基于 ML 的数据驱动方法具有加速发现新的牙科黏合剂和其他牙科材料的巨大潜力。

相似文献

1
Machine Learning Analysis of Microtensile Bond Strength of Dental Adhesives.
J Dent Res. 2023 Aug;102(9):1022-1030. doi: 10.1177/00220345231175868. Epub 2023 Jul 18.
2
High-Performance Dental Adhesives Containing an Ether-Based Monomer.
J Dent Res. 2020 Feb;99(2):189-195. doi: 10.1177/0022034519895269. Epub 2019 Dec 20.
5
Microtensile bond strength of universal adhesives to flat versus Class I cavity dentin with pulpal pressure simulation.
J Esthet Restor Dent. 2018 May;30(3):240-248. doi: 10.1111/jerd.12363. Epub 2018 Jan 26.
6
Delayed light activation of resin composite affects the bond strength of adhesives under dynamic simulated pulpal pressure.
Clin Oral Investig. 2022 Nov;26(11):6743-6752. doi: 10.1007/s00784-022-04634-3. Epub 2022 Jul 25.
10
"No-bottle" vs "multi-bottle" dentin adhesives--a microtensile bond strength and morphological study.
Dent Mater. 2001 Sep;17(5):373-80. doi: 10.1016/s0109-5641(00)00084-1.

本文引用的文献

1
Progress in Dental Adhesive Materials.
J Dent Res. 2023 Mar;102(3):254-262. doi: 10.1177/00220345221145673. Epub 2023 Jan 24.
2
A simple AI-enabled method for quantifying bacterial adhesion on dental materials.
Biomater Investig Dent. 2022 Aug 31;9(1):75-83. doi: 10.1080/26415275.2022.2114479. eCollection 2022.
3
Dental adhesion with resin composites: a review and clinical tips for best practice.
Br Dent J. 2022 May;232(9):615-619. doi: 10.1038/s41415-022-4144-7. Epub 2022 May 13.
5
Interpretable AI Explores Effective Components of CAD/CAM Resin Composites.
J Dent Res. 2022 Oct;101(11):1363-1371. doi: 10.1177/00220345221089251. Epub 2022 Apr 15.
6
A machine learning approach to investigate the materials science of enamel aging.
Dent Mater. 2021 Dec;37(12):1761-1771. doi: 10.1016/j.dental.2021.09.006. Epub 2021 Oct 6.
7
8
Current perspectives on dental adhesion: (1) Dentin adhesion - not there yet.
Jpn Dent Sci Rev. 2020 Nov;56(1):190-207. doi: 10.1016/j.jdsr.2020.08.004. Epub 2020 Sep 23.
9
Application of Artificial Intelligence in Dentistry.
J Dent Res. 2021 Mar;100(3):232-244. doi: 10.1177/0022034520969115. Epub 2020 Oct 29.
10
Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI.
J Dent Res. 2019 Oct;98(11):1234-1238. doi: 10.1177/0022034519867641. Epub 2019 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验