Suppr超能文献

自闭症筛查研究中失访的影响:总结与展望。

The influence of loss to follow-up in autism screening research: Taking stock and moving forward.

机构信息

UMass Chan Medical School, Worcester, MA, USA.

College of Medicine, Florida State University, Tallahassee, FL, USA.

出版信息

J Child Psychol Psychiatry. 2024 May;65(5):656-667. doi: 10.1111/jcpp.13867. Epub 2023 Jul 19.

Abstract

BACKGROUND

How best to improve the early detection of autism spectrum disorder (ASD) is the subject of significant controversy. Some argue that universal ASD screeners are highly accurate, whereas others argue that evidence for this claim is insufficient. Relatedly, there is no clear consensus as to the optimal role of screening for making referral decisions for evaluation and treatment. Published screening research can meaningfully inform these questions-but only through careful consideration of children who do not complete diagnostic follow-up.

METHODS

We developed two simulation models that re-analyze the results of a large-scale validation study of the M-CHAT-R/F by Robins et al. (2014, Pediatrics, 133, 37). Model #1 re-analyzes screener accuracy across six scenarios, each reflecting different assumptions regarding loss to follow-up. Model #2 builds on this by closely examining differential attrition at each point of the multi-step detection process.

RESULTS

Estimates of sensitivity ranged from 40% to 94% across scenarios, demonstrating that estimates of accuracy depend on assumptions regarding the diagnostic status of children who were lost to follow-up. Across a range of plausible assumptions, data also suggest that children with undiagnosed ASD may be more likely to complete follow-up than children without ASD, highlighting the role of clinicians and caregivers in the detection process.

CONCLUSIONS

Using simulation modeling as a quantitative method to examine potential bias in screening studies, analyses suggest that ASD screening tools may be less accurate than is often reported. Models also demonstrate the critical importance of every step in a detection process-including steps that determine whether children should complete an additional evaluation. We conclude that parent and clinician decision-making regarding follow-up may contribute more to detection than is widely assumed.

摘要

背景

如何更好地提高自闭症谱系障碍(ASD)的早期检出率是一个备受争议的话题。一些人认为,ASD 通用筛查工具的准确率很高,而另一些人则认为,这种说法的证据不足。与此相关的是,对于筛查在做出评估和治疗的转诊决策方面的最佳作用,目前尚无明确共识。已发表的筛查研究可以为这些问题提供有意义的信息——但前提是要仔细考虑那些没有完成诊断性随访的儿童。

方法

我们开发了两个模拟模型,对 Robins 等人(2014 年,《儿科学》,133 卷,37 期)对 M-CHAT-R/F 进行的大规模验证研究的结果进行了重新分析。模型#1 在六种情况下重新分析了筛查工具的准确性,每种情况都反映了对随访缺失的不同假设。模型#2 在此基础上,通过仔细检查多步骤检测过程中每个点的差异损耗,进一步构建模型。

结果

在不同的情况下,敏感性的估计值在 40%到 94%之间,这表明准确性的估计值取决于对随访中丢失的儿童的诊断状态的假设。在一系列合理的假设下,数据还表明,未确诊的 ASD 儿童可能比没有 ASD 的儿童更有可能完成随访,这突显了临床医生和照料者在检测过程中的作用。

结论

使用模拟建模作为一种定量方法来检查筛查研究中的潜在偏差,分析表明,ASD 筛查工具的准确性可能不如通常报告的那么高。模型还表明,检测过程中的每一步都至关重要——包括决定儿童是否应完成额外评估的步骤。我们得出结论,父母和临床医生在决定是否进行随访方面的决策可能比普遍认为的更为重要。

相似文献

本文引用的文献

9
How do we determine the utility of screening tools?我们如何确定筛查工具的效用?
Autism. 2020 Feb;24(2):271-273. doi: 10.1177/1362361319894170. Epub 2019 Dec 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验