Suppr超能文献

我们在自闭症筛查中优化的是什么?对 M-CHAT 算法变化的考察。

What are we optimizing for in autism screening? Examination of algorithmic changes in the M-CHAT.

机构信息

Mental Health, Norwegian Institute of Public Health, Oslo, Norway.

Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington, USA.

出版信息

Autism Res. 2022 Feb;15(2):296-304. doi: 10.1002/aur.2643. Epub 2021 Nov 26.

Abstract

The present study objectives were to examine the performance of the new M-CHAT-R algorithm to the original M-CHAT algorithm. The main purpose was to examine if the algorithmic changes increase identification of children later diagnosed with ASD, and to examine if there is a trade-off when changing algorithms. We included 54,463 screened cases from the Norwegian Mother and Child Cohort Study. Children were screened using the 23 items of the M-CHAT at 18 months. Further, the performance of the M-CHAT-R algorithm was compared to the M-CHAT algorithm on the 23-items. In total, 337 individuals were later diagnosed with ASD. Using M-CHAT-R algorithm decreased the number of correctly identified ASD children by 12 compared to M-CHAT, with no children with ASD screening negative on the M-CHAT criteria subsequently screening positive utilizing the M-CHAT-R algorithm. A nonparametric McNemar's test determined a statistically significant difference in identifying ASD utilizing the M-CHAT-R algorithm. The present study examined the application of 20-item MCHAT-R scoring criterion to the 23-item MCHAT. We found that this resulted in decreased sensitivity and increased specificity for identifying children with ASD, which is a trade-off that needs further investigation in terms of cost-effectiveness. However, further research is needed to optimize screening for ASD in the early developmental period to increase identification of false negatives.

摘要

本研究旨在检验新的 M-CHAT-R 算法与原始 M-CHAT 算法的性能。主要目的是检验算法改变是否能增加对后来被诊断为 ASD 的儿童的识别率,以及在改变算法时是否存在权衡。我们纳入了来自挪威母婴队列研究的 54463 例筛查病例。儿童在 18 个月时使用 M-CHAT 的 23 个项目进行筛查。此外,我们比较了 M-CHAT-R 算法和 M-CHAT 算法在 23 项上的性能。共有 337 名儿童后来被诊断为 ASD。与 M-CHAT 相比,使用 M-CHAT-R 算法减少了 12 名正确识别为 ASD 的儿童,没有一个 ASD 儿童在 M-CHAT 标准下筛查为阴性,随后在 M-CHAT-R 算法下筛查为阳性。非参数 McNemar 检验确定了使用 M-CHAT-R 算法识别 ASD 的统计学差异。本研究检验了 20 项 MCHAT-R 评分标准在 23 项 MCHAT 中的应用。我们发现,这导致识别 ASD 儿童的敏感性降低,特异性增加,这是一个需要进一步从成本效益角度进行调查的权衡。然而,需要进一步的研究来优化早期发育阶段的 ASD 筛查,以增加对假阴性的识别。

相似文献

6
Primary Care Autism Screening and Later Autism Diagnosis.初级保健自闭症筛查与后续自闭症诊断
Pediatrics. 2020 Aug;146(2). doi: 10.1542/peds.2019-2314. Epub 2020 Jul 6.

引用本文的文献

本文引用的文献

2
Primary Care Autism Screening and Later Autism Diagnosis.初级保健自闭症筛查与后续自闭症诊断
Pediatrics. 2020 Aug;146(2). doi: 10.1542/peds.2019-2314. Epub 2020 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验