Park Jong-Hyeok, Park Kyung-Il, Kim Dongmin, Lee Myungjae, Kang Shinuk, Kang Seung Joo, Yoon Dae Hyun
JLK, Seoul, Korea.
Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
Encephalitis. 2023 Jan;3(1):24-33. doi: 10.47936/encephalitis.2022.00108. Epub 2023 Jan 6.
Artificial intelligence (AI)-based image analysis tools to quantify the brain have become commercialized. However, insufficient data for learning and scanner specificity is a limitation for achieving high quality. In the present study, the performance of personalized brain segmentation software when applied to multicenter data using an AI model trained on data from a single institution was improved.
Preindicators of brain white matter (WM) information from the training dataset were utilized for preprocessing. During learning, data of cognitively normal (CN) individuals from a single center were utilized, and data of CN individuals and Alzheimer disease (AD) patients enrolled in multiple centers were considered the test set.
The preprocessing based on the preindicator (dice similarity coefficient [DSC], 0.8567) resulted in a better performance than without (DSC, 0.7921). The standard deviation (SD) of the WM region intensity (DSC, 0.8303) had a more substantial influence on the performance than the average intensity (DSC, 0.6591). When the SD of the test data WM intensity was smaller than the learning data, the performance improved (0.03 increase in lower SD, 0.05 decrease in higher SD). Furthermore, preindicator-based pretreatment increased the correlation of mean cortical thickness of the entire gray matter between Atroscan and FreeSurfer, and data augmentation without preprocessing did not.Both preindicator processing and data augmentation improved the correlation coefficient from 0.7584 to 0.8165.
Data augmentation and preindicator-based preprocessing of training data can improve the performance of AI-based brain segmentation software, both increasing the generalizability and stability of brain segmentation software.
基于人工智能(AI)的用于量化大脑的图像分析工具已实现商业化。然而,学习数据不足和扫描仪特异性是实现高质量的一个限制因素。在本研究中,使用在单个机构的数据上训练的AI模型,应用于多中心数据时,个性化脑部分割软件的性能得到了提升。
利用来自训练数据集的脑白质(WM)信息的预指标进行预处理。在学习过程中,使用来自单个中心的认知正常(CN)个体的数据,而将来自多个中心的CN个体和阿尔茨海默病(AD)患者的数据视为测试集。
基于预指标的预处理(骰子相似系数[DSC],0.8567)比未进行预处理(DSC,0.7921)具有更好的性能。WM区域强度的标准差(SD)(DSC,0.8303)对性能的影响比平均强度(DSC,0.6591)更大。当测试数据WM强度的SD小于学习数据时,性能得到改善(较低SD时增加0.03,较高SD时降低0.05)。此外,基于预指标的预处理增加了Atroscan和FreeSurfer之间整个灰质平均皮质厚度的相关性,而未进行预处理的数据增强则没有。预指标处理和数据增强均将相关系数从0.7584提高到了0.8165。
训练数据的数据增强和基于预指标的预处理可以提高基于AI的脑部分割软件的性能,同时提高脑部分割软件的通用性和稳定性。