Suppr超能文献

使用卷积神经网络学习稳健的大脑皮质分割的 MRI 分割。

Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks.

机构信息

Institute of Development, Aging and Cancer, Tohoku University, Japan.

Institute of Development, Aging and Cancer, Tohoku University, Japan.

出版信息

Med Image Anal. 2020 Apr;61:101639. doi: 10.1016/j.media.2020.101639. Epub 2020 Jan 11.

Abstract

The parcellation of the human cortex into meaningful anatomical units is a common step of various neuroimaging studies. There have been multiple successful efforts to process magnetic resonance (MR) brain images automatically and identify specific anatomical regions, following atlases defined from cortical landmarks. Those definitions usually rely first on a high-quality brain surface reconstruction. On the other hand, when high accuracy is not a requirement, simpler methods based on warping a probabilistic atlas have been widely adopted. Here, we develop a cortical parcellation method for MR brain images based on Convolutional Neural Networks (ConvNets), a machine-learning method, with the goal of automatically transferring the knowledge obtained from surface analyses onto something directly applicable on simpler volume data. We train a ConvNet on a large (thousand) set of cortical ribbons of multiple MRI cohorts, to reproduce parcellations obtained from a surface method, in this case FreeSurfer. Further, to make the model applicable in a broader context, we force the model to generalize to unseen segmentations. The model is evaluated on unseen data of unseen cohorts. We characterize the behavior of the model during learning, and quantify its reliance on the dataset itself, which tends to give support for the necessity of large training sets, augmentation, and multiple contrasts. Overall, ConvNets can provide an efficient way to parcel MRI images, following the guidance established within more complex methods, quickly and accurately. The trained model is embedded within a open-source parcellation tool available at https://github.com/bthyreau/parcelcortex.

摘要

将人类大脑皮层划分为有意义的解剖单位是各种神经影像学研究的常见步骤。已经有多项成功的努力来自动处理磁共振(MR)脑图像并根据皮质地标定义的图谱识别特定的解剖区域。这些定义通常首先依赖于高质量的大脑表面重建。另一方面,当不需要高精度时,基于变形概率图谱的更简单方法已被广泛采用。在这里,我们开发了一种基于卷积神经网络(ConvNets)的 MR 脑图像皮质分割方法,这是一种机器学习方法,旨在将从表面分析中获得的知识自动转移到更简单的体积数据上直接适用的东西上。我们在大量(数千)组来自多个 MRI 队列的皮质带状物上训练 ConvNet,以再现从表面方法(在此情况下为 FreeSurfer)获得的分割。此外,为了使模型在更广泛的上下文中具有适用性,我们迫使模型推广到看不见的分割。该模型在看不见的队列的看不见的数据上进行评估。我们描述了模型在学习过程中的行为,并量化了它对数据集本身的依赖程度,这倾向于支持大训练集、增强和多种对比的必要性。总体而言,ConvNets 可以为基于更复杂方法的 MRI 图像提供一种快速、准确的分割方法。训练好的模型嵌入在可在 https://github.com/bthyreau/parcelcortex 上获得的开源分割工具中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验