Deng Haohan, Li Qiaoqin, Liu Yongguo, Zhu Jiajing
Knowledge and Data Engineering Laboratory of Chinese Medicine, School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Heliyon. 2023 Jun 1;9(6):e16819. doi: 10.1016/j.heliyon.2023.e16819. eCollection 2023 Jun.
Drug-drug interactions (DDIs) extraction includes identifying drug entities and interactions between drug pairs from the biomedical corpus. The discovery of potential DDIs aids in our understanding of the mechanisms underlying adverse reactions or combination therapy to improve patient safety. The manual extraction of DDIs is very time-consuming and expensive; therefore, computer-aided extraction of DDIs is vital. Many neural network-based methods have been proposed and achieved good efficiency in the extraction of DDIs over the years. However, most studies improved the performance of DDIs extraction with various external drug features while directly using golden drug entities, leading to error propagation and low universality in practical application. In this paper, we propose a new multi-task framework called MTMG, which changes DDIs extraction from a sentence-level classification task to a sequence labeling task named Drug-Specified Token Classification (DSTC). The proposed approach, MTMG, jointly trains DSTC with drug named entity recognition (DNER) and two sentence-level auxiliary tasks we designed. We aim to improve the performance of the entire DDIs extraction pipeline by better using the correlation between entities and relationships and, to the extent possible, using the information of varying granularity implied in the dataset. Experimental results show that MTMG can both improve the accuracy of DNER and DDIs extraction and outperforms state-of-the-art technique.
药物-药物相互作用(DDIs)提取包括从生物医学语料库中识别药物实体以及药物对之间的相互作用。潜在药物-药物相互作用的发现有助于我们理解不良反应或联合治疗的潜在机制,从而提高患者安全性。人工提取药物-药物相互作用非常耗时且昂贵;因此,计算机辅助提取药物-药物相互作用至关重要。多年来,人们提出了许多基于神经网络的方法,并在药物-药物相互作用提取方面取得了良好的效率。然而,大多数研究在直接使用黄金标准药物实体的同时,通过各种外部药物特征提高了药物-药物相互作用提取的性能,导致在实际应用中出现误差传播和通用性较低的问题。在本文中,我们提出了一种名为MTMG的新的多任务框架,它将药物-药物相互作用提取从句子级分类任务转变为一个名为药物特定令牌分类(DSTC)的序列标注任务。所提出的MTMG方法将DSTC与药物命名实体识别(DNER)以及我们设计的两个句子级辅助任务联合训练。我们旨在通过更好地利用实体与关系之间的相关性,并尽可能利用数据集中隐含的不同粒度的信息,来提高整个药物-药物相互作用提取流程的性能。实验结果表明,MTMG既能提高DNER和药物-药物相互作用提取的准确性,又优于现有技术。