Suppr超能文献

当相互作用受到更多的生物限制时,稳定多样的食物网变得更加常见。

Stable diverse food webs become more common when interactions are more biologically constrained.

机构信息

Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.

Department of Environmental Science and Policy, University of California, Davis, CA 95616.

出版信息

Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2212061120. doi: 10.1073/pnas.2212061120. Epub 2023 Jul 24.

Abstract

Ecologists have long sought to understand how diversity and structure mediate the stability of whole ecosystems. For high-diversity food webs, the interactions between species are typically represented using matrices with randomly chosen interaction strengths. Unfortunately, this procedure tends to produce ecological systems with no underlying equilibrium solution, and so ecological inferences from this approach may be biased by nonbiological outcomes. Using recent computationally efficient methodological advances from metabolic networks, we employ for the first time an inverse approach to diversity-stability research. We compare classical random interaction matrices of realistic food web topology (hereafter the classical model) to feasible, biologically constrained, webs produced using the inverse approach. We show that an energetically constrained feasible model yields a far higher proportion of stable high-diversity webs than the classical random matrix approach. When we examine the energetically constrained interaction strength distributions of these matrix models, we find that although these diverse webs have consistent negative self-regulation, they do not require strong self-regulation to persist. These energetically constrained diverse webs instead show an increasing preponderance of weak interactions that are known to increase local stability. Further examination shows that some of these weak interactions naturally appear to arise in the model food webs from a constraint-generated realistic generalist-specialist trade-off, whereby generalist predators have weaker interactions than more specialized species. Additionally, the inverse technique we present here has enormous promise for understanding the role of the biological structure behind stable high-diversity webs and for linking empirical data to the theory.

摘要

生态学家长期以来一直试图理解多样性和结构如何调节整个生态系统的稳定性。对于高多样性的食物网,物种之间的相互作用通常使用随机选择相互作用强度的矩阵来表示。不幸的是,这种方法往往会产生没有潜在平衡解的生态系统,因此,这种方法得出的生态学推论可能会受到非生物结果的影响。我们利用代谢网络的最新计算效率方法,首次采用逆方法进行多样性-稳定性研究。我们将具有现实食物网拓扑结构的经典随机相互作用矩阵(以下简称经典模型)与使用逆方法生成的可行的、受生物限制的网络进行比较。我们表明,能量约束可行模型产生的稳定高多样性网络比例远远高于经典随机矩阵方法。当我们检查这些矩阵模型的能量约束相互作用强度分布时,我们发现,尽管这些多样化的网络具有一致的负自我调节,但它们不需要强烈的自我调节来维持。这些受能量约束的多样化网络反而表现出越来越多的弱相互作用,而众所周知,弱相互作用会增加局部稳定性。进一步的研究表明,这些弱相互作用中的一些似乎是从约束产生的现实的广义专家权衡中自然出现在模型食物网中的,其中广义捕食者的相互作用比更专业化的物种弱。此外,我们在这里提出的逆技术具有巨大的潜力,可以理解稳定的高多样性网络背后的生物结构的作用,并将经验数据与理论联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验