微生物组研究中广义Lotka-Volterra模型的结构可识别性
Structural identifiability of the generalized Lotka-Volterra model for microbiome studies.
作者信息
Remien Christopher H, Eckwright Mariah J, Ridenhour Benjamin J
机构信息
Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, USA.
Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA.
出版信息
R Soc Open Sci. 2021 Jul 21;8(7):201378. doi: 10.1098/rsos.201378. eCollection 2021 Jul.
Population dynamic models can be used in conjunction with time series of species abundances to infer interactions. Understanding microbial interactions is a prerequisite for numerous goals in microbiome research, including predicting how populations change over time, determining how manipulations of microbiomes affect dynamics and designing synthetic microbiomes to perform tasks. As such, there is great interest in adapting population dynamic theory for microbial systems. Despite the appeal, numerous hurdles exist. One hurdle is that the data commonly obtained from DNA sequencing yield estimates of relative abundances, while population dynamic models such as the generalized Lotka-Volterra model track absolute abundances or densities. It is not clear whether relative abundance data alone can be used to infer parameters of population dynamic models such as the Lotka-Volterra model. We used structural identifiability analyses to determine the extent to which a time series of relative abundances can be used to parametrize the generalized Lotka-Volterra model. We found that only with absolute abundance data to accompany relative abundance estimates from sequencing can all parameters be uniquely identified. However, relative abundance data alone do contain information on relative interaction strengths, which is sufficient for many studies where the goal is to estimate key interactions and their effects on dynamics. Using synthetic data of a simple community for which we know the underlying structure, local practical identifiability analysis showed that modest amounts of both process and measurement error do not fundamentally affect these identifiability properties.
种群动态模型可与物种丰度的时间序列结合使用,以推断相互作用。了解微生物相互作用是微生物组研究众多目标的先决条件,这些目标包括预测种群随时间的变化、确定微生物组的操作如何影响动态以及设计执行任务的合成微生物组。因此,人们对将种群动态理论应用于微生物系统有着浓厚的兴趣。尽管有吸引力,但仍存在许多障碍。一个障碍是,通常从DNA测序获得的数据产生相对丰度的估计值,而诸如广义Lotka-Volterra模型等种群动态模型跟踪的是绝对丰度或密度。仅相对丰度数据是否可用于推断诸如Lotka-Volterra模型等种群动态模型的参数尚不清楚。我们使用结构可识别性分析来确定相对丰度的时间序列可用于参数化广义Lotka-Volterra模型的程度。我们发现,只有在测序的相对丰度估计值伴有绝对丰度数据时,所有参数才能被唯一识别。然而,仅相对丰度数据确实包含有关相对相互作用强度的信息,这对于许多旨在估计关键相互作用及其对动态影响的研究来说已经足够。使用我们已知其潜在结构的简单群落的合成数据,局部实际可识别性分析表明,适度的过程误差和测量误差并不会从根本上影响这些可识别性属性。