Nguyen Lan, Ali Adnan, Aissa Brahim, Teke Sosiawati, Bhattarai Roshan Mangal, Denra Avik, Vu Oai Quoc, Mok Young Sun
Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation Doha 5825 Qatar.
Nanoscale Adv. 2025 May 27. doi: 10.1039/d4na01024h.
Supercapacitors have been studied as a potential complementary technology for rechargeable batteries, fuel cells, and dielectric capacitors. Wearable energy storage systems need freestanding, flexible electrodes for maximum functioning. Optimal energy storage system performance demands an optimal balance between mechanical component flexibility and electrode energy storage and release efficiency. This work specifically focuses on investigation and comparison of the electrochemical performance of the synthesized TiCT , N-TiCT , and the TiCT /CoO hybrid composite. CoO NPs have been synthesized using an innovative and cost-effective novel synthesis route employing a "microplasma discharge reactor". This offers significant benefits, including the effective prevention of hazardous reducing agent generation in comparison to other routes. Upon exposure to 1 A g current density, the TiCT /CoO hybrid composite electrode demonstrates a maximum gravimetric capacity of 128 F g and a specific capacitance of 576.7 F g, exhibiting a significant 95.06% increase in specific capacitance compared to TiCT . Furthermore, from the kinetic analysis of the CV curves, it has been noticed that the contributions of the diffusion-controlled and pseudocapacitive-controlled processes are 60% and 40%, respectively, in the charge storage for the applied TiCT /CoO hybrid composite electrode.
超级电容器已被作为一种用于可充电电池、燃料电池和介电电容器的潜在互补技术进行研究。可穿戴储能系统需要独立的柔性电极以实现最佳功能。最佳的储能系统性能要求在机械部件柔韧性与电极储能和释放效率之间达到最佳平衡。这项工作专门聚焦于对合成的TiCT 、N-TiCT 和TiCT /CoO混合复合材料的电化学性能进行研究和比较。CoO纳米颗粒是使用一种创新且经济高效的新型合成路线,通过“微等离子体放电反应器”合成的。与其他路线相比,这具有显著优势,包括有效防止危险还原剂的产生。在1 A g电流密度下,TiCT /CoO混合复合电极展现出128 F g的最大比容量和576.7 F g的比电容,与TiCT 相比,比电容显著增加了95.06%。此外,通过对循环伏安曲线的动力学分析发现,在所施加的TiCT /CoO混合复合电极的电荷存储过程中,扩散控制过程和赝电容控制过程的贡献分别为60%和40%。