Zhang Haoran, Yang Jianlong, Zheng Ce, Zhao Shiqing, Zhang Aili
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Biomed Opt Express. 2023 Jun 13;14(7):3294-3307. doi: 10.1364/BOE.486276. eCollection 2023 Jul 1.
Deep learning has been successfully applied to OCT segmentation. However, for data from different manufacturers and imaging protocols, and for different regions of interest (ROIs), it requires laborious and time-consuming data annotation and training, which is undesirable in many scenarios, such as surgical navigation and multi-center clinical trials. Here we propose an annotation-efficient learning method for OCT segmentation that could significantly reduce annotation costs. Leveraging self-supervised generative learning, we train a Transformer-based model to learn the OCT imagery. Then we connect the trained Transformer-based encoder to a CNN-based decoder, to learn the dense pixel-wise prediction in OCT segmentation. These training phases use open-access data and thus incur no annotation costs, and the pre-trained model can be adapted to different data and ROIs without re-training. Based on the greedy approximation for the k-center problem, we also introduce an algorithm for the selective annotation of the target data. We verified our method on publicly-available and private OCT datasets. Compared to the widely-used U-Net model with 100% training data, our method only requires of the data for achieving the same segmentation accuracy, and it speeds the training up to ∼3.5 times. Furthermore, our proposed method outperforms other potential strategies that could improve annotation efficiency. We think this emphasis on learning efficiency may help improve the intelligence and application penetration of OCT-based technologies.
深度学习已成功应用于光学相干断层扫描(OCT)分割。然而,对于来自不同制造商和成像协议的数据,以及不同的感兴趣区域(ROI),它需要耗费大量精力和时间的数据标注和训练,这在许多场景中是不可取的,比如手术导航和多中心临床试验。在此,我们提出一种用于OCT分割的高效标注学习方法,该方法可显著降低标注成本。利用自监督生成学习,我们训练一个基于Transformer的模型来学习OCT图像。然后,我们将训练好的基于Transformer的编码器连接到基于卷积神经网络(CNN)的解码器,以学习OCT分割中的密集逐像素预测。这些训练阶段使用开放获取的数据,因此不会产生标注成本,并且预训练模型无需重新训练即可适应不同的数据和ROI。基于对k中心问题的贪婪近似,我们还引入了一种用于目标数据选择性标注的算法。我们在公开可用和私有OCT数据集上验证了我们的方法。与使用100%训练数据的广泛使用的U-Net模型相比,我们的方法仅需 的数据就能达到相同的分割精度,并且将训练速度提高到约3.5倍。此外,我们提出的方法优于其他可能提高标注效率的潜在策略。我们认为这种对学习效率的强调可能有助于提高基于OCT技术的智能水平和应用普及率。