Suppr超能文献

用于光学相干断层扫描(OCT)分割的高效标注学习

Annotation-efficient learning for OCT segmentation.

作者信息

Zhang Haoran, Yang Jianlong, Zheng Ce, Zhao Shiqing, Zhang Aili

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Biomed Opt Express. 2023 Jun 13;14(7):3294-3307. doi: 10.1364/BOE.486276. eCollection 2023 Jul 1.

Abstract

Deep learning has been successfully applied to OCT segmentation. However, for data from different manufacturers and imaging protocols, and for different regions of interest (ROIs), it requires laborious and time-consuming data annotation and training, which is undesirable in many scenarios, such as surgical navigation and multi-center clinical trials. Here we propose an annotation-efficient learning method for OCT segmentation that could significantly reduce annotation costs. Leveraging self-supervised generative learning, we train a Transformer-based model to learn the OCT imagery. Then we connect the trained Transformer-based encoder to a CNN-based decoder, to learn the dense pixel-wise prediction in OCT segmentation. These training phases use open-access data and thus incur no annotation costs, and the pre-trained model can be adapted to different data and ROIs without re-training. Based on the greedy approximation for the k-center problem, we also introduce an algorithm for the selective annotation of the target data. We verified our method on publicly-available and private OCT datasets. Compared to the widely-used U-Net model with 100% training data, our method only requires of the data for achieving the same segmentation accuracy, and it speeds the training up to ∼3.5 times. Furthermore, our proposed method outperforms other potential strategies that could improve annotation efficiency. We think this emphasis on learning efficiency may help improve the intelligence and application penetration of OCT-based technologies.

摘要

深度学习已成功应用于光学相干断层扫描(OCT)分割。然而,对于来自不同制造商和成像协议的数据,以及不同的感兴趣区域(ROI),它需要耗费大量精力和时间的数据标注和训练,这在许多场景中是不可取的,比如手术导航和多中心临床试验。在此,我们提出一种用于OCT分割的高效标注学习方法,该方法可显著降低标注成本。利用自监督生成学习,我们训练一个基于Transformer的模型来学习OCT图像。然后,我们将训练好的基于Transformer的编码器连接到基于卷积神经网络(CNN)的解码器,以学习OCT分割中的密集逐像素预测。这些训练阶段使用开放获取的数据,因此不会产生标注成本,并且预训练模型无需重新训练即可适应不同的数据和ROI。基于对k中心问题的贪婪近似,我们还引入了一种用于目标数据选择性标注的算法。我们在公开可用和私有OCT数据集上验证了我们的方法。与使用100%训练数据的广泛使用的U-Net模型相比,我们的方法仅需 的数据就能达到相同的分割精度,并且将训练速度提高到约3.5倍。此外,我们提出的方法优于其他可能提高标注效率的潜在策略。我们认为这种对学习效率的强调可能有助于提高基于OCT技术的智能水平和应用普及率。

相似文献

1
Annotation-efficient learning for OCT segmentation.
Biomed Opt Express. 2023 Jun 13;14(7):3294-3307. doi: 10.1364/BOE.486276. eCollection 2023 Jul 1.
2
TSSK-Net: Weakly supervised biomarker localization and segmentation with image-level annotation in retinal OCT images.
Comput Biol Med. 2023 Feb;153:106467. doi: 10.1016/j.compbiomed.2022.106467. Epub 2022 Dec 21.
3
Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation.
Comput Methods Programs Biomed. 2021 Apr;202:106004. doi: 10.1016/j.cmpb.2021.106004. Epub 2021 Feb 23.
5
COVID-19 Infection Segmentation and Severity Assessment Using a Self-Supervised Learning Approach.
Diagnostics (Basel). 2022 Jul 26;12(8):1805. doi: 10.3390/diagnostics12081805.
6
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.
8
Towards annotation-efficient segmentation via image-to-image translation.
Med Image Anal. 2022 Nov;82:102624. doi: 10.1016/j.media.2022.102624. Epub 2022 Sep 21.
10
MF-Net: Multi-Scale Information Fusion Network for CNV Segmentation in Retinal OCT Images.
Front Neurosci. 2021 Oct 8;15:743769. doi: 10.3389/fnins.2021.743769. eCollection 2021.

引用本文的文献

1
Spatial and Temporal Changes in Choroid Morphology Associated With Long-Duration Spaceflight.
Invest Ophthalmol Vis Sci. 2025 May 1;66(5):17. doi: 10.1167/iovs.66.5.17.
2
Semi-supervised 3D retinal fluid segmentation via correlation mutual learning with global reasoning attention.
Biomed Opt Express. 2024 Nov 21;15(12):6905-6921. doi: 10.1364/BOE.541655. eCollection 2024 Dec 1.
4
30 Years of Optical Coherence Tomography: introduction to the feature issue.
Biomed Opt Express. 2023 Sep 26;14(10):5484-5487. doi: 10.1364/BOE.505569. eCollection 2023 Oct 1.

本文引用的文献

1
Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network.
IEEE Trans Med Imaging. 2023 May;42(5):1265-1277. doi: 10.1109/TMI.2022.3225687. Epub 2023 May 2.
2
Self-supervised learning in medicine and healthcare.
Nat Biomed Eng. 2022 Dec;6(12):1346-1352. doi: 10.1038/s41551-022-00914-1. Epub 2022 Aug 11.
3
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency.
Med Image Anal. 2022 Aug;80:102517. doi: 10.1016/j.media.2022.102517. Epub 2022 Jun 15.
4
Domain Adaptation for Medical Image Analysis: A Survey.
IEEE Trans Biomed Eng. 2022 Mar;69(3):1173-1185. doi: 10.1109/TBME.2021.3117407. Epub 2022 Feb 18.
6
Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner.
Nat Biomed Eng. 2021 Jul;5(7):726-736. doi: 10.1038/s41551-021-00753-6. Epub 2021 Jul 12.
7
ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model.
IEEE Trans Med Imaging. 2021 Mar;40(3):928-939. doi: 10.1109/TMI.2020.3042802. Epub 2021 Mar 2.
8
Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network.
Biomed Opt Express. 2020 Jun 24;11(7):3968-3984. doi: 10.1364/BOE.395279. eCollection 2020 Jul 1.
9
Automatic Segmentation and Visualization of Choroid in OCT with Knowledge Infused Deep Learning.
IEEE J Biomed Health Inform. 2020 Dec;24(12):3408-3420. doi: 10.1109/JBHI.2020.3023144. Epub 2020 Dec 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验