Suppr超能文献

纳米颗粒辅助核磁共振化学传感中检测灵敏度的分子机制

Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing.

作者信息

Franco-Ulloa Sebastian, Cesari Andrea, Riccardi Laura, De Biasi Federico, Rosa-Gastaldo Daniele, Mancin Fabrizio, De Vivo Marco, Rastrelli Federico

机构信息

Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.

Expert Analytics, Møllergata 8, 0179 Oslo, Norway.

出版信息

J Phys Chem Lett. 2023 Aug 3;14(30):6912-6918. doi: 10.1021/acs.jpclett.3c01005. Epub 2023 Jul 27.

Abstract

Nanoparticle-assisted nuclear magnetic resonance (NMR) chemosensing exploits monolayer-protected nanoparticles as supramolecular hosts to detect small molecules in complex mixtures via nuclear Overhauser effect experiments with detection limits down to the micromolar range. Still, the structure-sensitivity relationships at the basis of such detection limits are little understood. In this work, we integrate NMR spectroscopy and atomistic molecular dynamics simulations to examine the covariates that affect the sensitivity of different NMR chemosensing experiments [saturation transfer difference (STD), water STD, and high-power water-mediated STD]. Our results show that the intensity of the observed signals correlates with the number and duration of the spin-spin interactions between the analytes and the nanoparticles and/or between the analytes and the nanoparticles' solvation molecules. In turn, these parameters depend on the location and dynamics of each analyte inside the monolayer. This insight will eventually facilitate the tailoring of experimental and computational setups to the analyte's chemistry, making NMR chemosensing an even more effective technique in practical use.

摘要

纳米颗粒辅助核磁共振(NMR)化学传感利用单层保护纳米颗粒作为超分子主体,通过核Overhauser效应实验检测复杂混合物中的小分子,检测限低至微摩尔范围。然而,基于此类检测限的结构-灵敏度关系仍鲜为人知。在这项工作中,我们结合了核磁共振光谱和原子分子动力学模拟,以研究影响不同NMR化学传感实验[饱和转移差异(STD)、水STD和高功率水介导的STD]灵敏度的协变量。我们的结果表明,观察到的信号强度与分析物与纳米颗粒之间和/或分析物与纳米颗粒溶剂化分子之间的自旋-自旋相互作用的数量和持续时间相关。反过来,这些参数取决于每个分析物在单层内的位置和动力学。这一见解最终将有助于根据分析物的化学性质定制实验和计算设置,使NMR化学传感在实际应用中成为一种更有效的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da41/10405269/ffca12f8dd6d/jz3c01005_0001.jpg

相似文献

1
Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing.
J Phys Chem Lett. 2023 Aug 3;14(30):6912-6918. doi: 10.1021/acs.jpclett.3c01005. Epub 2023 Jul 27.
2
Nanoparticle-Assisted NMR Spectroscopy: Enhanced Detection of Analytes by Water-Mediated Saturation Transfer.
J Am Chem Soc. 2019 Mar 27;141(12):4870-4877. doi: 10.1021/jacs.8b13225. Epub 2019 Feb 28.
3
Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective.
Prog Nucl Magn Reson Spectrosc. 2020 Apr;117:70-88. doi: 10.1016/j.pnmrs.2019.12.001. Epub 2019 Dec 21.
4
Detection and identification of designer drugs by nanoparticle-based NMR chemosensing.
Chem Sci. 2018 Apr 25;9(21):4777-4784. doi: 10.1039/c8sc01283k. eCollection 2018 Jun 7.
5
Analysis of Complex Mixtures by Chemosensing NMR Using -Hydrogen-Induced Hyperpolarization.
Acc Chem Res. 2022 Jul 5;55(13):1832-1844. doi: 10.1021/acs.accounts.1c00796. Epub 2022 Jun 16.
6
Turning Supramolecular Receptors into Chemosensors by Nanoparticle-Assisted "NMR Chemosensing".
J Am Chem Soc. 2015 Sep 9;137(35):11399-406. doi: 10.1021/jacs.5b06300. Epub 2015 Aug 27.
7
NMR-Based Chemosensing via p-H2 Hyperpolarization: Application to Natural Extracts.
Anal Chem. 2016 Mar 15;88(6):3406-12. doi: 10.1021/acs.analchem.6b00184. Epub 2016 Mar 3.
8
Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.
Chem. 2017 Jul 13;3(1):92-109. doi: 10.1016/j.chempr.2017.05.016.
9
Hybrid nanoreceptors for high sensitivity detection of small molecules by NMR chemosensing.
Chem Commun (Camb). 2021 Mar 25;57(24):3002-3005. doi: 10.1039/d0cc07559k. Epub 2021 Feb 24.
10
Nanoparticle-assisted NMR detection of organic anions: from chemosensing to chromatography.
J Am Chem Soc. 2015 Jan 21;137(2):886-92. doi: 10.1021/ja511205e. Epub 2015 Jan 12.

引用本文的文献

1
Rational design of gold nanoparticle-based chemosensors for detection of the tumor marker 3-methoxytyramine.
Chem Sci. 2025 Mar 4;16(15):6282-6289. doi: 10.1039/d4sc08758e. eCollection 2025 Apr 9.
2
Cyclodextrin-Based Nanogels for Stabilization and Sensing of Curcumin.
ACS Appl Nano Mater. 2024 Aug 27;7(17):20153-20162. doi: 10.1021/acsanm.4c02972. eCollection 2024 Sep 13.

本文引用的文献

1
Selective NMR detection of -methylated amines using cavitand-decorated silica nanoparticles as receptors.
Chem Commun (Camb). 2022 Sep 27;58(77):10861-10864. doi: 10.1039/d2cc04199e.
2
Uniform water-mediated saturation transfer: A sensitivity-improved alternative to WaterLOGSY.
J Magn Reson. 2022 May;338:107190. doi: 10.1016/j.jmr.2022.107190. Epub 2022 Mar 4.
3
Thiolate end-group regulates ligand arrangement, hydration and affinity for small compounds in monolayer-protected gold nanoparticles.
J Colloid Interface Sci. 2022 Feb;607(Pt 2):1373-1381. doi: 10.1016/j.jcis.2021.09.083. Epub 2021 Sep 20.
4
Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint.
J Phys Chem Lett. 2021 Jun 17;12(23):5616-5622. doi: 10.1021/acs.jpclett.1c01365. Epub 2021 Jun 10.
5
Hybrid nanoreceptors for high sensitivity detection of small molecules by NMR chemosensing.
Chem Commun (Camb). 2021 Mar 25;57(24):3002-3005. doi: 10.1039/d0cc07559k. Epub 2021 Feb 24.
6
Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective.
Prog Nucl Magn Reson Spectrosc. 2020 Apr;117:70-88. doi: 10.1016/j.pnmrs.2019.12.001. Epub 2019 Dec 21.
8
Molecular-Dynamics-Simulation-Directed Rational Design of Nanoreceptors with Targeted Affinity.
Angew Chem Int Ed Engl. 2019 Jun 3;58(23):7702-7707. doi: 10.1002/anie.201902316. Epub 2019 May 2.
9
The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles.
Chem Rev. 2019 Apr 24;119(8):4819-4880. doi: 10.1021/acs.chemrev.8b00733. Epub 2019 Mar 28.
10
Nanoparticle-Assisted NMR Spectroscopy: Enhanced Detection of Analytes by Water-Mediated Saturation Transfer.
J Am Chem Soc. 2019 Mar 27;141(12):4870-4877. doi: 10.1021/jacs.8b13225. Epub 2019 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验