Riccardi Laura, Gabrielli Luca, Sun Xiaohuan, De Biasi Federico, Rastrelli Federico, Mancin Fabrizio, De Vivo Marco
Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
Chem. 2017 Jul 13;3(1):92-109. doi: 10.1016/j.chempr.2017.05.016.
The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.
贵金属纳米颗粒表面单层配体的自组装决定了纳米颗粒的基本行为及其功能。在这项计算与实验相结合的研究中,我们分析了单层保护金纳米颗粒(AuNP)中功能化包覆硫醇的结构、组织和动力学。我们解释了功能化包覆硫醇如何通过单层自身内部以及与溶剂之间相互作用的微妙且在某种程度上违反直觉的平衡进行自组织。我们进一步描述了这些相互作用的性质和可塑性如何调节基于纳米颗粒的化学传感。重要的是,我们发现包覆硫醇的自组织能够在AuNP中诱导形成结合口袋。这些瞬态空腔可以容纳小分子,模拟蛋白质 - 配体识别,这可以解释在核磁共振化学传感实验中观察到的对不同有机分析物的选择性和灵敏度。因此,我们的研究结果主张合理设计定制的包覆基团,以在单层保护的AuNP上形成特定的识别结合位点。