Suppr超能文献

肿瘤间质浸润淋巴细胞的自动定量与乳腺癌的预后相关。

Automated quantification of stromal tumour infiltrating lymphocytes is associated with prognosis in breast cancer.

机构信息

Department of Pathology, Hospital del Mar, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain.

Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain.

出版信息

Virchows Arch. 2023 Nov;483(5):655-663. doi: 10.1007/s00428-023-03608-4. Epub 2023 Jul 27.

Abstract

Stromal tumour infiltrating lymphocytes (sTIL) in haematoxylin and eosin (H&E) stained sections has been linked to better outcomes and better responses to neoadjuvant therapy in triple-negative and HER2-positive breast cancer (TNBC and HER2 +). However, the infiltrate includes different cell populations that have specific roles in the tumour immune microenvironment. Various studies have found high concordance between sTIL visual quantification and computational assessment, but specific data on the individual prognostic impact of plasma cells or lymphocytes within sTIL on patient prognosis is still unknown. In this study, we validated a deep-learning breast cancer sTIL scoring model (smsTIL) based on the segmentation of tumour cells, benign ductal cells, lymphocytes, plasma cells, necrosis, and 'other' cells in whole slide images (WSI). Focusing on HER2 + and TNBC patient samples, we assessed the concordance between sTIL visual scoring and the smsTIL in 130 WSI. Furthermore, we analysed 175 WSI to correlate smsTIL with clinical data and patient outcomes. We found a high correlation between sTIL values scored visually and semi-automatically (R = 0.76; P = 2.2e-16). Patients with higher smsTIL had better overall survival (OS) in TNBC (P = 0.0021). In the TNBC cohort, smsTIL was as an independent prognostic factor for OS. As part of this work, we introduce a new segmentation dataset of H&E-stained WSI.

摘要

苏木精和伊红(H&E)染色切片中的基质肿瘤浸润淋巴细胞(sTIL)与三阴性和 HER2 阳性乳腺癌(TNBC 和 HER2+)的更好结局和对新辅助治疗的更好反应相关。然而,浸润物包括在肿瘤免疫微环境中具有特定作用的不同细胞群体。各种研究发现 sTIL 视觉定量和计算评估之间具有高度一致性,但关于 sTIL 中浆细胞或淋巴细胞对患者预后的个别预后影响的具体数据仍不清楚。在这项研究中,我们验证了一种基于肿瘤细胞、良性导管细胞、淋巴细胞、浆细胞、坏死和“其他”细胞在全切片图像(WSI)中的分割的深度学习乳腺癌 sTIL 评分模型(smsTIL)。专注于 HER2+和 TNBC 患者样本,我们评估了 130 张 WSI 中 sTIL 视觉评分和 smsTIL 之间的一致性。此外,我们分析了 175 张 WSI,以将 smsTIL 与临床数据和患者结局相关联。我们发现视觉评分和半自动评分之间存在高度相关性(R=0.76;P=2.2e-16)。smsTIL 较高的患者在 TNBC 中具有更好的总生存率(OS)(P=0.0021)。在 TNBC 队列中,smsTIL 是 OS 的独立预后因素。作为这项工作的一部分,我们引入了苏木精和伊红染色 WSI 的新分割数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验