Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China.
Yulin Science and Technology Bureau, Yulin 719053, China.
Math Biosci Eng. 2023 May 8;20(7):11688-11712. doi: 10.3934/mbe.2023520.
We develop a mathematical model for the transmission of brucellosis in sheep taking into account external inputs, immunity, stage structure and other factors. We find the the basic reproduction number $ R_0 $ in terms of the model parameters, and prove the global stability of the disease-free equilibrium. Then, the existence and global stability of the endemic equilibrium is proven. Finally, sheep data from Yulin, China are employed to fit the model parameters for three different environmental infection exposure conditions. The variability between different models in terms of control measures are analyzed numerically. Results show that the model is sensitive to the control parameters for different environmental infection exposure functions. This means that in practical modeling, the selection of environmental infection exposure functions needs to be properly considered.
我们建立了一个考虑外部输入、免疫、阶段结构和其他因素的绵羊布鲁氏菌病传播的数学模型。我们根据模型参数得到了基本再生数$R_0$,并证明了无病平衡点的全局稳定性。然后,证明了地方病平衡点的存在性和全局稳定性。最后,我们利用来自中国榆林的绵羊数据来拟合三种不同环境感染暴露条件下的模型参数。通过数值分析比较了不同模型在控制措施方面的差异。结果表明,该模型对不同环境感染暴露函数的控制参数非常敏感。这意味着在实际建模中,需要适当考虑环境感染暴露函数的选择。