Suppr超能文献

基于人工智能的建模对蛋白质组装预测准确性的影响:来自第15届蛋白质结构预测关键评估(CASP15)的见解

The Impact of AI-Based Modeling on the Accuracy of Protein Assembly Prediction: Insights from CASP15.

作者信息

Ozden Burcu, Kryshtafovych Andriy, Karaca Ezgi

机构信息

Izmir Biomedicine and Genome Center, Izmir, Türkiye.

Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye.

出版信息

bioRxiv. 2023 Sep 19:2023.07.10.548341. doi: 10.1101/2023.07.10.548341.

Abstract

In CASP15, 87 predictors submitted around 11,000 models on 41 assembly targets. The community demonstrated exceptional performance in overall fold and interface contact prediction, achieving an impressive success rate of 90% (compared to 31% in CASP14). This remarkable accomplishment is largely due to the incorporation of DeepMind's AF2-Multimer approach into custom-built prediction pipelines. To evaluate the added value of participating methods, we compared the community models to the baseline AF2-Multimer predictor. In over 1/3 of cases the community models were superior to the baseline predictor. The main reasons for this improved performance were the use of custom-built multiple sequence alignments, optimized AF2-Multimer sampling, and the manual assembly of AF2-Multimer-built subcomplexes. The best three groups, in order, are Zheng, Venclovas and Wallner. Zheng and Venclovas reached a 73.2% success rate over all (41) cases, while Wallner attained 69.4% success rate over 36 cases. Nonetheless, challenges remain in predicting structures with weak evolutionary signals, such as nanobody-antigen, antibody-antigen, and viral complexes. Expectedly, modeling large complexes remains also challenging due to their high memory compute demands. In addition to the assembly category, we assessed the accuracy of modeling interdomain interfaces in the tertiary structure prediction targets. Models on seven targets featuring 17 unique interfaces were analyzed. Best predictors achieved the 76.5% success rate, with the UM-TBM group being the leader. In the interdomain category, we observed that the predictors faced challenges, as in the case of the assembly category, when the evolutionary signal for a given domain pair was weak or the structure was large. Overall, CASP15 witnessed unprecedented improvement in interface modeling, reflecting the AI revolution seen in CASP14.

摘要

在第15届蛋白质结构预测关键评估(CASP15)中,87个预测程序提交了约11,000个针对41个组装靶标的模型。该领域在整体折叠和界面接触预测方面表现卓越,成功率高达90%(相比之下,CASP14中的成功率为31%)。这一显著成就很大程度上归功于将DeepMind的AF2 - 多聚体方法纳入定制的预测流程。为评估参与方法的附加价值,我们将该领域的模型与基线AF2 - 多聚体预测器进行了比较。在超过三分之一的情况下,该领域的模型优于基线预测器。性能提升的主要原因包括使用定制的多序列比对、优化的AF2 - 多聚体采样以及手动组装基于AF2 - 多聚体构建的亚复合物。排名前三的小组依次是郑、文克洛瓦斯和瓦尔纳。郑组和文克洛瓦斯组在所有(41)个案例中的成功率达到73.2%,而瓦尔纳组在36个案例中的成功率为69.4%。尽管如此,在预测具有微弱进化信号的结构时仍存在挑战,例如纳米抗体 - 抗原、抗体 - 抗原和病毒复合物。不出所料,由于对内存计算要求很高,对大型复合物进行建模也仍然具有挑战性。除了组装类别,我们还评估了三级结构预测靶标中结构域间界面建模的准确性。分析了7个具有17个独特界面的靶标的模型。最佳预测程序的成功率达到76.5%,UM - TBM组领先。在结构域间类别中,我们观察到与组装类别情况类似,当给定结构域对的进化信号微弱或结构较大时,预测程序面临挑战。总体而言,CASP15见证了界面建模方面前所未有的进步,反映了在CASP14中看到的人工智能革命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6df2/10518998/6084d2b23498/nihpp-2023.07.10.548341v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验