Suppr超能文献

心电图记录作为极早期自闭症可能性的预测指标:一种机器学习方法。

ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach.

作者信息

Tilwani Deepa, Bradshaw Jessica, Sheth Amit, O'Reilly Christian

机构信息

Artificial Intelligence Institute, University of South Carolina, Columbia, SC 29208, USA.

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA.

出版信息

Bioengineering (Basel). 2023 Jul 11;10(7):827. doi: 10.3390/bioengineering10070827.

Abstract

In recent years, there has been a rise in the prevalence of autism spectrum disorder (ASD). The diagnosis of ASD requires behavioral observation and standardized testing completed by highly trained experts. Early intervention for ASD can begin as early as 1-2 years of age, but ASD diagnoses are not typically made until ages 2-5 years, thus delaying the start of intervention. There is an urgent need for non-invasive biomarkers to detect ASD in infancy. While previous research using physiological recordings has focused on brain-based biomarkers of ASD, this study investigated the potential of electrocardiogram (ECG) recordings as an ASD biomarker in 3-6-month-old infants. We recorded the heart activity of infants at typical and elevated familial likelihood for ASD during naturalistic interactions with objects and caregivers. After obtaining the ECG signals, features such as heart rate variability (HRV) and sympathetic and parasympathetic activities were extracted. Then we evaluated the effectiveness of multiple machine learning classifiers for classifying ASD likelihood. Our findings support our hypothesis that infant ECG signals contain important information about ASD familial likelihood. Amongthe various machine learning algorithms tested, KNN performed best according to sensitivity (0.70 ± 0.117), F1-score (0.689 ± 0.124), precision (0.717 ± 0.128), accuracy (0.70 ± 0.117, -value = 0.02), and ROC (0.686 ± 0.122, -value = 0.06). These results suggest that ECG signals contain relevant information about the likelihood of an infant developing ASD. Future studies should consider the potential of information contained in ECG, and other indices of autonomic control, for the development of biomarkers of ASD in infancy.

摘要

近年来,自闭症谱系障碍(ASD)的患病率呈上升趋势。ASD的诊断需要由训练有素的专家进行行为观察和标准化测试。ASD的早期干预最早可在1至2岁开始,但ASD的诊断通常要到2至5岁才做出,从而延迟了干预的开始。迫切需要非侵入性生物标志物来在婴儿期检测ASD。虽然先前使用生理记录的研究主要关注ASD基于大脑的生物标志物,但本研究调查了心电图(ECG)记录作为3至6个月大婴儿ASD生物标志物的潜力。我们记录了在与物体和照顾者进行自然互动时,具有典型和较高ASD家族患病可能性的婴儿的心脏活动。获取ECG信号后,提取了诸如心率变异性(HRV)以及交感神经和副交感神经活动等特征。然后我们评估了多种机器学习分类器对ASD患病可能性进行分类的有效性。我们的研究结果支持了我们的假设,即婴儿ECG信号包含有关ASD家族患病可能性的重要信息。在所测试的各种机器学习算法中,根据灵敏度(0.70±0.117)、F1分数(0.689±0.124)、精确度(0.717±0.128)、准确度(0.70±0.117,-值=0.02)和ROC(0.686±0.122,-值=0.06),KNN表现最佳。这些结果表明ECG信号包含有关婴儿患ASD可能性的相关信息。未来的研究应考虑ECG中包含的信息以及自主控制的其他指标在婴儿期ASD生物标志物开发中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc8/10376813/80068b0cf83f/bioengineering-10-00827-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验