Suppr超能文献

利用机器学习识别儿童自闭症谱系障碍的神经解剖学和行为特征。

Identifying neuroanatomical and behavioral features for autism spectrum disorder diagnosis in children using machine learning.

机构信息

Department of Communication Sciences and Disorders, University of Vermont, Burlington, VT, United States of America.

Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States of America.

出版信息

PLoS One. 2022 Jul 7;17(7):e0269773. doi: 10.1371/journal.pone.0269773. eCollection 2022.

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause significant social, communication, and behavioral challenges. Diagnosis of ASD is complicated and there is an urgent need to identify ASD-associated biomarkers and features to help automate diagnostics and develop predictive ASD models. The present study adopts a novel evolutionary algorithm, the conjunctive clause evolutionary algorithm (CCEA), to select features most significant for distinguishing individuals with and without ASD, and is able to accommodate datasets having a small number of samples with a large number of feature measurements. The dataset is unique and comprises both behavioral and neuroimaging measurements from a total of 28 children from 7 to 14 years old. Potential biomarker candidates identified include brain volume, area, cortical thickness, and mean curvature in specific regions around the cingulate cortex, frontal cortex, and temporal-parietal junction, as well as behavioral features associated with theory of mind. A separate machine learning classifier (i.e., k-nearest neighbors algorithm) was used to validate the CCEA feature selection and for ASD prediction. Study findings demonstrate how machine learning tools might help move the needle on improving diagnostic and predictive models of ASD.

摘要

自闭症谱系障碍(ASD)是一种神经发育障碍,可导致严重的社交、沟通和行为挑战。ASD 的诊断较为复杂,目前迫切需要确定与 ASD 相关的生物标志物和特征,以帮助实现 ASD 的自动化诊断和开发预测性 ASD 模型。本研究采用了一种新颖的进化算法,即合取子句进化算法(CCEA),用于选择对区分 ASD 患者和非 ASD 患者最具意义的特征,且能够适用于具有少量样本和大量特征测量的数据集。该数据集具有独特性,包含了总共 28 名 7 至 14 岁儿童的行为和神经影像学测量数据。确定的潜在生物标志物候选者包括扣带回皮质、额皮质和颞顶联合区周围特定区域的脑容量、面积、皮质厚度和平均曲率,以及与心理理论相关的行为特征。另一个机器学习分类器(即 k-最近邻算法)用于验证 CCEA 特征选择和 ASD 预测。研究结果表明,机器学习工具如何帮助改进 ASD 的诊断和预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9167/9262216/4600b982a5c7/pone.0269773.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验