Suppr超能文献

影响荧光或发光探针及其他化学试剂用于测量氧化应激和自由基应激的因素。

Factors Important in the Use of Fluorescent or Luminescent Probes and Other Chemical Reagents to Measure Oxidative and Radical Stress.

机构信息

Formerly of the Gray Cancer Institute, Mount Vernon Hospital/University of Oxford, UK.

出版信息

Biomolecules. 2023 Jun 26;13(7):1041. doi: 10.3390/biom13071041.

Abstract

Numerous chemical probes have been used to measure or image oxidative, nitrosative and related stress induced by free radicals in biology and biochemistry. In many instances, the chemical pathways involved are reasonably well understood. However, the rate constants for key reactions involved are often not yet characterized, and thus it is difficult to ensure the measurements reflect the flux of oxidant/radical species and are not influenced by competing factors. Key questions frequently unanswered are whether the reagents are used under 'saturating' conditions, how specific probes are for particular radicals or oxidants and the extent of the involvement of competing reactions (e.g., with thiols, ascorbate and other antioxidants). The commonest-used probe for 'reactive oxygen species' in biology actually generates superoxide radicals in producing the measured product in aerobic systems. This review emphasizes the need to understand reaction pathways and in particular to quantify the kinetic parameters of key reactions, as well as measure the intracellular levels and localization of probes, if such reagents are to be used with confidence.

摘要

已经有许多化学探针被用于测量或成像生物学和生物化学中由自由基引起的氧化、硝化和相关应激。在许多情况下,所涉及的化学途径都得到了很好的理解。然而,关键反应的速率常数往往还没有被描述,因此很难确保测量结果反映氧化剂/自由基的通量,并且不受竞争因素的影响。经常无法回答的关键问题是:试剂是否在“饱和”条件下使用;特定探针对特定自由基或氧化剂的特异性如何;以及竞争反应(例如与硫醇、抗坏血酸和其他抗氧化剂)的参与程度。在生物学中最常用的“活性氧物种”探针实际上会在有氧系统中产生超氧自由基,从而产生所测量产物。这篇综述强调了理解反应途径的必要性,特别是需要量化关键反应的动力学参数,以及测量探针的细胞内水平和定位,如果要自信地使用这些试剂的话。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91cb/10377120/f5dd68510a5c/biomolecules-13-01041-g001.jpg

相似文献

2
Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects.
Free Radic Biol Med. 2007 Oct 1;43(7):995-1022. doi: 10.1016/j.freeradbiomed.2007.06.026. Epub 2007 Jul 10.
3
4
[Free oxygen radiacals and kidney diseases--part I].
Med Pregl. 2000 Sep-Oct;53(9-10):463-74.
6
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
Chem Biol Interact. 2006 Mar 10;160(1):1-40. doi: 10.1016/j.cbi.2005.12.009. Epub 2006 Jan 23.
7
Reactive oxygen species and the free radical theory of aging.
Free Radic Biol Med. 2013 Jul;60:1-4. doi: 10.1016/j.freeradbiomed.2013.02.011. Epub 2013 Feb 19.
8
Pulse Radiolysis Studies for Mechanism in Biochemical Redox Reactions.
Chem Rev. 2019 Mar 27;119(6):4413-4462. doi: 10.1021/acs.chemrev.8b00405. Epub 2019 Feb 11.
9
The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells.
Biochim Biophys Acta. 2014 Feb;1840(2):730-8. doi: 10.1016/j.bbagen.2013.05.004. Epub 2013 May 10.
10
Redox/radical repertoire rapport: pathophysiology and therapeutics.
Acta Anaesthesiol Scand. 1998 Jan;42(1):1-3. doi: 10.1111/j.1399-6576.1998.tb05072.x.

引用本文的文献

1
Alkyl Chloride-Functionalized Polymers Mediate Oxidation of Thioethers Initiated by Ionizing Radiation.
ACS Appl Polym Mater. 2025 Mar 19;7(6):3835-3841. doi: 10.1021/acsapm.5c00054. eCollection 2025 Mar 28.
2
The role of short-chain fatty acids in cancer prevention and cancer treatment.
Arch Biochem Biophys. 2024 Nov;761:110172. doi: 10.1016/j.abb.2024.110172. Epub 2024 Oct 4.
4
Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation.
Arch Intern Med Res. 2024;7(2):80-103. doi: 10.26502/aimr.0168. Epub 2024 Apr 26.
5
Biomarkers of Oxidative and Radical Stress.
Biomolecules. 2024 Feb 5;14(2):194. doi: 10.3390/biom14020194.

本文引用的文献

2
Recent progress in the development of fluorescent probes for imaging pathological oxidative stress.
Chem Soc Rev. 2023 Jun 6;52(11):3873-3926. doi: 10.1039/d2cs00172a.
3
Hyperglycemia-induced oxidative stress and epigenetic regulation of ET-1 gene in endothelial cells.
Front Genet. 2023 Apr 17;14:1167773. doi: 10.3389/fgene.2023.1167773. eCollection 2023.
4
Recent advances in fluorescent probes of peroxynitrite: Structural, strategies and biological applications.
Theranostics. 2023 Mar 13;13(5):1716-1744. doi: 10.7150/thno.80529. eCollection 2023.
5
A self-charging salt water battery for antitumor therapy.
Sci Adv. 2023 Mar 31;9(13):eadf3992. doi: 10.1126/sciadv.adf3992.
6
Fluorescent probes for ferroptosis bioimaging: advances, challenges, and prospects.
Chem Soc Rev. 2023 Mar 20;52(6):2011-2030. doi: 10.1039/d2cs00454b.
7
Concurrent bioimaging of microalgal photophysiology and oxidative stress.
Photosynth Res. 2023 Feb;155(2):177-190. doi: 10.1007/s11120-022-00989-6. Epub 2022 Dec 4.
8
NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells.
Redox Biol. 2022 Nov;57:102497. doi: 10.1016/j.redox.2022.102497. Epub 2022 Oct 9.
9
Design of Dual-responsive ROS/RSS Fluorescent Probes and Their Application in Bioimaging.
Chem Asian J. 2022 Dec 1;17(23):e202200907. doi: 10.1002/asia.202200907. Epub 2022 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验