Akuno Albert Orwa, Ramírez-Ramírez L Leticia, Espinoza Jesús F
Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas A.C., Jalisco s/n, Colonia Valenciana, Guanajuato C.P. 36023, Gto, Mexico.
Departamento de Matemáticas, Universidad de Sonora, Rosales y Boulevard Luis Encinas, Hermosillo C.P. 83000, Sonora, Mexico.
Entropy (Basel). 2023 Jun 22;25(7):968. doi: 10.3390/e25070968.
Most studies modeling population mobility and the spread of infectious diseases, particularly those using meta-population multi-patch models, tend to focus on the theoretical properties and numerical simulation of such models. As such, there is relatively scant literature focused on numerical fit, inference, and uncertainty quantification of epidemic models with population mobility. In this research, we use three estimation techniques to solve an inverse problem and quantify its uncertainty for a human-mobility-based multi-patch epidemic model using mobile phone sensing data and confirmed COVID-19-positive cases in Hermosillo, Mexico. First, we utilize a Brownian bridge model using mobile phone GPS data to estimate the residence and mobility parameters of the epidemic model. In the second step, we estimate the optimal model epidemiological parameters by deterministically inverting the model using a Darwinian-inspired evolutionary algorithm (EA)-that is, a genetic algorithm (GA). The third part of the analysis involves performing inference and uncertainty quantification in the epidemic model using two Bayesian Monte Carlo sampling methods: t-walk and Hamiltonian Monte Carlo (HMC). The results demonstrate that the estimated model parameters and incidence adequately fit the observed daily COVID-19 incidence in Hermosillo. Moreover, the estimated parameters from the HMC method yield large credible intervals, improving their coverage for the observed and predicted daily incidences. Furthermore, we observe that the use of a multi-patch model with mobility yields improved predictions when compared to a single-patch model.
大多数对人口流动和传染病传播进行建模的研究,尤其是那些使用元种群多斑块模型的研究,往往侧重于此类模型的理论特性和数值模拟。因此,专注于具有人口流动的流行病模型的数值拟合、推断和不确定性量化的文献相对较少。在本研究中,我们使用三种估计技术来解决一个反问题,并使用墨西哥埃莫西约的手机传感数据和确诊的COVID-19阳性病例,对基于人类流动的多斑块流行病模型的不确定性进行量化。首先,我们利用一个使用手机GPS数据的布朗桥模型来估计流行病模型的居住和流动参数。在第二步中,我们通过使用一种受达尔文启发的进化算法(EA)——即遗传算法(GA)来确定性地反转模型,从而估计最优的模型流行病学参数。分析的第三部分涉及使用两种贝叶斯蒙特卡罗采样方法:t游走和哈密顿蒙特卡罗(HMC),在流行病模型中进行推断和不确定性量化。结果表明,估计的模型参数和发病率能够充分拟合埃莫西约观察到的每日COVID-19发病率。此外,从HMC方法估计的参数产生了较大的可信区间,提高了它们对观察到的和预测的每日发病率的覆盖范围。此外,我们观察到,与单斑块模型相比,使用具有流动性的多斑块模型能产生更好的预测。