Suppr超能文献

通过贝叶斯推理预测多波疫情。

Forecasting Multi-Wave Epidemics Through Bayesian Inference.

作者信息

Blonigan Patrick, Ray Jaideep, Safta Cosmin

机构信息

Sandia National Laboratories, Livermore, CA United States.

出版信息

Arch Comput Methods Eng. 2021;28(6):4169-4183. doi: 10.1007/s11831-021-09603-9. Epub 2021 Jul 28.

Abstract

We present a simple, near-real-time Bayesian method to infer and forecast a multiwave outbreak, and demonstrate it on the COVID-19 pandemic. The approach uses timely epidemiological data that has been widely available for COVID-19. It provides short-term forecasts of the outbreak's evolution, which can then be used for medical resource planning. The method postulates one- and multiwave infection models, which are convolved with the incubation-period distribution to yield competing disease models. The disease models' parameters are estimated via Markov chain Monte Carlo sampling and information-theoretic criteria are used to select between them for use in forecasting. The method is demonstrated on two- and three-wave COVID-19 outbreaks in California, New Mexico and Florida, as observed during Summer-Winter 2020. We find that the method is robust to noise, provides useful forecasts (along with uncertainty bounds) and that it reliably detected when the initial single-wave COVID-19 outbreaks transformed into successive surges as containment efforts in these states failed by the end of Spring 2020.

摘要

我们提出了一种简单的、近乎实时的贝叶斯方法来推断和预测多波疫情爆发,并在新冠疫情中进行了验证。该方法利用了广泛可得的新冠疫情实时流行病学数据。它提供了疫情演变的短期预测,可用于医疗资源规划。该方法假设了单波和多波感染模型,这些模型与潜伏期分布进行卷积以产生相互竞争的疾病模型。通过马尔可夫链蒙特卡罗采样估计疾病模型的参数,并使用信息论标准在它们之间进行选择以用于预测。该方法在2020年夏秋至冬期间加利福尼亚州、新墨西哥州和佛罗里达州观察到的两波和三波新冠疫情爆发中得到了验证。我们发现该方法对噪声具有鲁棒性,提供了有用的预测(以及不确定性范围),并且在2020年春季末这些州的防控措施失败,最初的单波新冠疫情爆发转变为连续激增时,它能够可靠地检测到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee9/8317486/a71cb7850576/11831_2021_9603_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验