Suppr超能文献

利用深度学习 AlphaFold2、分子对接和动力学模拟研究 E484Q 和 L452R 突变对 SARS-CoV-2 B.1.617.1 结构和结合行为的影响。

Impact of E484Q and L452R Mutations on Structure and Binding Behavior of SARS-CoV-2 B.1.617.1 Using Deep Learning AlphaFold2, Molecular Docking and Dynamics Simulation.

机构信息

School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

出版信息

Int J Mol Sci. 2023 Jul 17;24(14):11564. doi: 10.3390/ijms241411564.

Abstract

During the outbreak of COVID-19, many SARS-CoV-2 variants presented key amino acid mutations that influenced their binding abilities with angiotensin-converting enzyme 2 (hACE2) and neutralizing antibodies. For the B.1.617 lineage, there had been fears that two key mutations, i.e., L452R and E484Q, would have additive effects on the evasion of neutralizing antibodies. In this paper, we systematically investigated the impact of the L452R and E484Q mutations on the structure and binding behavior of B.1.617.1 using deep learning AlphaFold2, molecular docking and dynamics simulation. We firstly predicted and verified the structure of the S protein containing L452R and E484Q mutations via the AlphaFold2-calculated pLDDT value and compared it with the experimental structure. Next, a molecular simulation was performed to reveal the structural and interaction stabilities of the S protein of the double mutant variant with hACE2. We found that the double mutations, L452R and E484Q, could lead to a decrease in hydrogen bonds and higher interaction energy between the S protein and hACE2, demonstrating the lower structural stability and the worse binding affinity in the long dynamic evolutional process, even though the molecular docking showed the lower binding energy score of the S1 RBD of the double mutant variant with hACE2 than that of the wild type (WT) with hACE2. In addition, docking to three approved neutralizing monoclonal antibodies (mAbs) showed a reduced binding affinity of the double mutant variant, suggesting a lower neutralization ability of the mAbs against the double mutant variant. Our study helps lay the foundation for further SARS-CoV-2 studies and provides bioinformatics and computational insights into how the double mutations lead to immune evasion, which could offer guidance for subsequent biomedical studies.

摘要

在 COVID-19 爆发期间,许多 SARS-CoV-2 变体出现了关键的氨基酸突变,这些突变影响了它们与血管紧张素转化酶 2(hACE2)和中和抗体的结合能力。对于 B.1.617 谱系,人们担心两个关键突变,即 L452R 和 E484Q,会对中和抗体的逃避产生附加效应。在本文中,我们使用深度学习 AlphaFold2、分子对接和动力学模拟系统地研究了 L452R 和 E484Q 突变对 B.1.617.1 结构和结合行为的影响。我们首先通过 AlphaFold2 计算的 pLDDT 值预测和验证了含有 L452R 和 E484Q 突变的 S 蛋白的结构,并将其与实验结构进行了比较。接下来,进行了分子模拟,以揭示双突变变体 S 蛋白与 hACE2 的结构和相互作用稳定性。我们发现,L452R 和 E484Q 这两个双突变可以导致 S 蛋白与 hACE2 之间氢键减少,相互作用能增加,表明在长动态演化过程中结构稳定性降低,结合亲和力变差,尽管分子对接显示双突变变体 S1 RBD 与 hACE2 的结合能比野生型(WT)与 hACE2 的结合能低。此外,对接三种已批准的中和单克隆抗体(mAbs)显示双突变变体的结合亲和力降低,表明 mAbs 对双突变变体的中和能力降低。我们的研究有助于为进一步的 SARS-CoV-2 研究奠定基础,并为双突变如何导致免疫逃避提供生物信息学和计算见解,这可为后续的生物医学研究提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dba4/10380202/963469c2388f/ijms-24-11564-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验