Al-Khaleefa Ahmed Salih, Ahmad Mohd Riduan, Isa Azmi Awang Md, Esa Mona Riza Mohd, Aljeroudi Yazan, Jubair Mohammed Ahmed, Malik Reza Firsandaya
Broadband and Networking (BBNET) Research Group, Centre for Telecommunication and Research Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia.
Institute of High Voltage and High Current (IVAT), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor Bharu, Malaysia.
Sensors (Basel). 2019 May 25;19(10):2397. doi: 10.3390/s19102397.
Wi-Fi has shown enormous potential for indoor localization because of its wide utilization and availability. Enabling the use of Wi-Fi for indoor localization necessitates the construction of a fingerprint and the adoption of a learning algorithm. The goal is to enable the use of the fingerprint in training the classifiers for predicting locations. Existing models of machine learning Wi-Fi-based localization are brought from machine learning and modified to accommodate for practical aspects that occur in indoor localization. The performance of these models varies depending on their effectiveness in handling and/or considering specific characteristics and the nature of indoor localization behavior. One common behavior in the indoor navigation of people is its cyclic dynamic nature. To the best of our knowledge, no existing machine learning model for Wi-Fi indoor localization exploits cyclic dynamic behavior for improving localization prediction. This study modifies the widely popular online sequential extreme learning machine (OSELM) to exploit cyclic dynamic behavior for achieving improved localization results. Our new model is called knowledge preserving OSELM (KP-OSELM). Experimental results conducted on the two popular datasets TampereU and UJIndoorLoc conclude that KP-OSELM outperforms benchmark models in terms of accuracy and stability. The last achieved accuracy was 92.74% for TampereU and 72.99% for UJIndoorLoc.
由于Wi-Fi的广泛使用和可用性,它在室内定位方面显示出了巨大的潜力。要实现将Wi-Fi用于室内定位,需要构建指纹并采用学习算法。目标是在训练用于预测位置的分类器时能够使用该指纹。现有的基于机器学习的Wi-Fi定位模型源自机器学习,并经过修改以适应室内定位中出现的实际情况。这些模型的性能因其处理和/或考虑室内定位行为的特定特征及性质的有效性而异。人们在室内导航中的一种常见行为是其循环动态特性。据我们所知,现有的用于Wi-Fi室内定位的机器学习模型都没有利用循环动态行为来改善定位预测。本研究对广泛流行的在线序列极限学习机(OSELM)进行修改,以利用循环动态行为来实现更好的定位结果。我们的新模型称为知识保留OSELM(KP-OSELM)。在两个流行数据集TampereU和UJIndoorLoc上进行的实验结果表明,KP-OSELM在准确性和稳定性方面优于基准模型。TampereU数据集最终达到的准确率为92.74%,UJIndoorLoc数据集为72.99%。