Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
Sci Bull (Beijing). 2023 Aug 30;68(16):1784-1799. doi: 10.1016/j.scib.2023.07.030. Epub 2023 Jul 24.
Myocardial fibrosis is the villain of sudden cardiac death. Myocardial ischemia/reperfusion (MI/R) injury induces cardiomyocyte damage or even death, which in turn stimulates fibroblast activation and fibrosis, but the intercellular communication mechanism remains unknown. Recent studies have shown that small extracellular vesicles (sEVs) significantly contribute to intercellular communication. Whether and how sEV might mediate post-MI/R cardiomyocyte/fibroblasts communication remain unknown. Here, in vivo and in vitro MI/R models were established. We demonstrate that sEVs derived from cardiomyocyte (Myo-sEVs) carry mitochondrial components, which enter fibroblasts to initiate myocardial fibrosis. Based on bioinformatics screening and experimental verification, the activating molecule in Beclin1-regulated autophagy protein 1 (autophagy/beclin-1 regulator 1, Ambra1) was found to be a critical component of these sEV and might be a new marker for Myo-sEVs. Interestingly, release of Ambra1-Myo-sEVs was caused by secretory rather than canonical autophagy after MI/R injury and thereby escaped degradation. In ischemic and peripheral areas, Ambra1-Myo-sEVs were internalized by fibroblasts, and the delivered mtDNA components to activate the fibroblast cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote fibroblast activation and proliferation. In addition, our data show that Ambra1 is expressed on the EV surface and cardiac-specific Ambra1 down regulation inhibits the Ambra1-Myo-sEVs release and fibroblast uptake, effectively inhibiting ischemic myocardial fibrosis. This finding newly provides the evidence that myocardial secretory autophagy plays a role in intercellular communication during cardiac fibrosis. Ambra1 is a newly characterized molecule with bioactivity and might be a marker for Myo-sEVs, providing new therapeutic targets for cardiac remodeling.
心肌纤维化是心脏性猝死的罪魁祸首。心肌缺血/再灌注(MI/R)损伤可诱导心肌细胞损伤甚至死亡,进而刺激成纤维细胞活化和纤维化,但细胞间通讯机制尚不清楚。最近的研究表明,小细胞外囊泡(sEVs)对细胞间通讯有重要贡献。sEV 是否以及如何介导 MI/R 后心肌细胞/成纤维细胞的通讯尚不清楚。本研究建立了体内和体外 MI/R 模型。结果表明,心肌细胞来源的 sEV(Myo-sEVs)携带线粒体成分,进入成纤维细胞,启动心肌纤维化。通过生物信息学筛选和实验验证,发现 Beclin1 调控自噬蛋白 1(自噬/beclin-1 调控因子 1,Ambra1)的激活分子是这些 sEV 的关键组成部分,可能是 Myo-sEVs 的一个新标志物。有趣的是,MI/R 损伤后,Ambra1-Myo-sEVs 的释放是由分泌而非经典自噬引起的,从而逃避了降解。在缺血和外周区域,Ambra1-Myo-sEVs 被成纤维细胞内化,所传递的 mtDNA 成分激活成纤维细胞环鸟苷酸-腺苷酸合酶(cGAS)-干扰素基因刺激物(STING)途径,促进成纤维细胞活化和增殖。此外,我们的数据表明,Ambra1 表达在 EV 表面上,心脏特异性 Ambra1 下调可抑制 Ambra1-Myo-sEVs 的释放和成纤维细胞摄取,有效抑制缺血性心肌纤维化。这一发现为心肌分泌自噬在心脏纤维化过程中的细胞间通讯中发挥作用提供了新的证据。Ambra1 是一个具有生物活性的新特征分子,可能是 Myo-sEVs 的标志物,为心脏重构提供了新的治疗靶点。