Yip Sarah W, Barch Deanna M, Chase Henry W, Flagel Shelly, Huys Quentin J M, Konova Anna B, Montague Read, Paulus Martin
Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.
Departments of Psychological & Brain Sciences, Psychiatry, and Radiology, Washington University, St. Louis, Missouri.
Biol Psychiatry Glob Open Sci. 2022 Apr 2;3(3):319-328. doi: 10.1016/j.bpsgos.2022.03.011. eCollection 2023 Jul.
Theory-driven and data-driven computational approaches to psychiatry have enormous potential for elucidating mechanism of disease and providing translational linkages between basic science findings and the clinic. These approaches have already demonstrated utility in providing clinically relevant understanding, primarily via back translation from clinic to computation, revealing how specific disorders or symptoms map onto specific computational processes. Nonetheless, forward translation, from computation to clinic, remains rare. In addition, consensus regarding specific barriers to forward translation-and on the best strategies to overcome these barriers-is limited. This perspective review brings together expert basic and computationally trained researchers and clinicians to 1) identify challenges specific to preclinical model systems and clinical translation of computational models of cognition and affect, and 2) discuss practical approaches to overcoming these challenges. In doing so, we highlight recent evidence for the ability of computational approaches to predict treatment responses in psychiatric disorders and discuss considerations for maximizing the clinical relevance of such models (e.g., via longitudinal testing) and the likelihood of stakeholder adoption (e.g., via cost-effectiveness analyses).
理论驱动和数据驱动的精神病学计算方法在阐明疾病机制以及提供基础科学发现与临床之间的转化联系方面具有巨大潜力。这些方法已在提供临床相关理解方面展现出效用,主要是通过从临床到计算的反向转化,揭示特定疾病或症状如何映射到特定计算过程。然而,从计算到临床的正向转化仍然很少见。此外,关于正向转化的具体障碍以及克服这些障碍的最佳策略的共识有限。这篇观点综述汇聚了基础研究、接受过计算训练的研究人员以及临床医生等专家,以1)识别临床前模型系统以及认知与情感计算模型的临床转化所特有的挑战,2)讨论克服这些挑战的实用方法。在此过程中,我们强调了计算方法预测精神疾病治疗反应能力的最新证据,并讨论了最大化此类模型临床相关性(例如通过纵向测试)以及利益相关者采用可能性(例如通过成本效益分析)的相关考量。